Mọi người giúp mình bài này với ạ :(((
Cho hai điểm A, B. Tìm tọa độ điểm M thuộc đường thẳng Δ sao cho tích vô hướng \(\overrightarrow{AM}.\overrightarrow{BM}\)nhỏ nhất khi:
A (1;2), B (3;4), Δ: 3x + 2y +1 = 0
m.n giúp mk bài nì với đc ko, mk cần gấp cho ngày mai ak nên xin m.n giúp mk
Trong không gian Oxyz, cho A(3;1), B(2;1), C(2;2) tìm tọa độ điểm M sao cho \(\overrightarrow{AM}-5\overrightarrow{BM}+3\overrightarrow{CM}=\overrightarrow{0}\)
GIÚP MÌNH VỚI , MÌNH ĐANG CẦN GẤP!!!!! --- CẢM ƠN!!!!!
Trong mặt phẳng tọa độ Oxy , cho các điểm A( -7; 3), B( 0;1 ), C( -4;2)
a) Chứng minh A, B, C là ba đỉnh của một tam giác
b) Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành. Tìm tọa độ giao điểm hai đường chéo của hình bình hành ABCD
c) Tìm tọa độ điểm E sao cho B là trọng tâm \(\Delta ACE\)
d) Tìm tọa độ điểm M sao cho \(\overrightarrow{AM}=2\overrightarrow{BM}-3\overrightarrow{BC}\)
e) Tìm tọa độ điểm N trên trục hoành sao cho B, C, N thẳng hàng
f) Tìm K( -2, y) để A, B, K thẳng hàng
m.n giúp mk 4 bài nì đc ko, mk cần gấp cho ngày mai ak
1/ Trong không gian Oxyz, cho A(3;1), B(2;1), C(2;2). Tìm tọa độ điểm M sao cho \(\overrightarrow{AM}-5\overrightarrow{BM}+3\overrightarrow{CM}=\overrightarrow{0}\)
2/ Trong không gian Oxyz, cho tam giác ABC với A(1;-1), B(2;-4), C(m;2), trọng tâm G của tam giác thuộc trục tung. Khi đó m+8=?
3/ Trong mặt phẳng tọa độ Oxy, hình chiếu của điểm M(13;2) trên trục Oxy là điểm H(a;b). Gía trị của P = 3a + 15b = ?
4/ Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với A(-1;2), B(2;1), C(6;-5) và điểm E thuộc trục Ox thỏa mãn |\(\overrightarrow{EA}+\overrightarrow{EB}+\overrightarrow{EC}\)| min thì tọa độ điểm E là?
mong m.n giúp mk cần rất gấp cho chiều mai, mấy bài này ngoài tầm khả năng lm của mk nên mong m.n cứu mk vs
1) cho hình thang ABCD có AB // CD và AB=\(\dfrac{1}{3}\)CD . điểm M nằm trên AC sao cho \(\overrightarrow{AM}=x\overrightarrow{MC}\) . Tìm \(x\) sao cho B,M,D thẳng hàng.
2) cho tam giác ABC. A(1;1), B(4;3), C(2;-2) .tìm tọa độ điểm M thuộc trục o\(x\) sao cho :\(|\overrightarrow{MA}-2\overrightarrow{MB}+3\overrightarrow{MC|}\) nhỏ nhất.
3) cho A(3;4) , B(-1;1). tìm m thuộc o\(x\) sao cho AM+BM nhỏ nhất.
Câu 1:
Vì \(\overrightarrow{BA}\uparrow\uparrow\overrightarrow{CD}\) và \(BA=\frac{1}{3}CD\Rightarrow \overrightarrow{BA}=\frac{1}{3}\overrightarrow{CD}\)
Để $B,M,D$ thẳng hàng \(\Leftrightarrow \exists k\in\mathbb{R}|\overrightarrow{BM}=k\overrightarrow{MD}\)
\(\Leftrightarrow \overrightarrow{BA}+\overrightarrow{AM}=k\overrightarrow{MD}\)
\(\Leftrightarrow \frac{1}{3}\overrightarrow{CD}+x\overrightarrow{MC}=k\overrightarrow{MD}\)
\(\Leftrightarrow \frac{1}{3}(\overrightarrow{MC}+\overrightarrow{CD})+(x-\frac{1}{3})\overrightarrow{MC}=k\overrightarrow{MD}\)
\(\Leftrightarrow \frac{1}{3}\overrightarrow{MD}+(x-\frac{1}{3})\overrightarrow{MC}=k\overrightarrow{MD}\)
\(\Leftrightarrow (x-\frac{1}{3})\overrightarrow{MC}=(k-\frac{1}{3})\overrightarrow{MD}\)
Vì \(\overrightarrow{MC}; \overrightarrow{MD}\) không phải 2 vecto cùng phương nên điều trên chỉ xảy ra khi \(x-\frac{1}{3}=k-\frac{1}{3}=0\Rightarrow x=\frac{1}{3}\)
Bài 2:
Lấy điểm $I(a,b)$ sao cho \(\overrightarrow{IA}-2\overrightarrow{IB}+3\overrightarrow{IC}=\overrightarrow{0}\)
\(\Leftrightarrow (1-a, 1-b)-2(4-a, 3-b)+3(2-a, -2-b)=(0,0)\)
\(\Leftrightarrow (-1-2a,-11-2b)=(0,0)\Rightarrow a=-\frac{1}{2}; b=\frac{-11}{2}\)
Vậy \(I(-\frac{1}{2}; -\frac{11}{2})\)
Ta có:
\(|\overrightarrow{MA}-2\overrightarrow{MB}+3\overrightarrow{MC}|=|\overrightarrow{MI}+\overrightarrow{IA}-2(\overrightarrow{MI}+\overrightarrow{IB})+3(\overrightarrow{MI}+\overrightarrow{IC})|\)
\(|2\overrightarrow{MI}+(\overrightarrow{IA}-2\overrightarrow{IB}+3\overrightarrow{IC})|=2|\overrightarrow{MI}|\)
Để \(|\overrightarrow{MA}-2\overrightarrow{MB}+3\overrightarrow{MC}|\) min thì \(|\overrightarrow{MI}|\) min. Điều này xảy ra khi $M$ là hình chiếu của $I$ trên $Ox$
Do đó \(M=(-\frac{1}{2};0)\)
Bài 3:
Lấy điểm $B'$ đối xứng với $B$ qua trục Ox thì \(B'(-1;-1)\)
Ta có: \(MA+MB=MA+MB'\geq AB'=\sqrt{(3--1)^2+(4--1)^2}=\sqrt{41}\)
Dấu "=" xảy ra khi \(M,A,B'\) thẳng hàng hay $M$ là giao điểm của $AB'$ với trục $Ox$
Dễ viết được PTĐT $AB'$ là \(y=\frac{5}{4}x+\frac{1}{4}\)
Điểm \(M\in (AB')\) có $y_M=0$ nên \(x_M=\frac{-1}{5}\)
Vậy \(M(\frac{-1}{5};0)\)
trong hệ trục tọa độ Oxy, cho 2 điểm A(0, 1) và B(3, 4). Điểm M (a, b) thuộc đường thẳng (d) x-2y-2=0 thỏa mãn \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|\) đạt giá trị nhỏ nhất, Khi đó a+b bằng
M thuộc d nên: \(a-2b-2=0\Rightarrow2b=a-2\)
\(\left\{{}\begin{matrix}\overrightarrow{MA}=\left(-a;1-b\right)\\\overrightarrow{MB}=\left(3-a;4-b\right)\end{matrix}\right.\) \(\Rightarrow\overrightarrow{MA}+\overrightarrow{MB}=\left(3-2a;5-2b\right)=\left(3-2a;9-2a\right)\)
Đặt \(T=\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\sqrt{\left(3-2a\right)^2+\left(9-2a\right)^2}=\sqrt{8a^2-48a+90}=\sqrt{8\left(a-3\right)^2+18}\ge\sqrt{18}\)
Dấu "=" xảy ra khi \(a-3=0\Leftrightarrow a=3\Rightarrow b=\dfrac{1}{2}\)
Trong không gian với hệ tọa độ Oxy, cho đường thẳng ∆ : x - 1 2 = y 1 = z + 2 - 1 và hai điểm A(0;-1;3), B(1;-2;1). Tìm tọa độ điểm M thuộc đường thẳng Δ sao cho M A 2 + 2 M B 2 đạt giá trị nhỏ nhất.
Trong không gian với hệ tọa độ Oxy, cho đường thẳng △ : x - 1 2 = y 1 = z + 2 - 1 và hai điểm A(0;-1;3), B(1;-2;1). Tìm tọa độ điểm M thuộc đường thẳng Δ sao cho M A 2 + 2 M B 2 đạt giá trị nhỏ nhất
A. M(5;2;-4)
B. M(-1;-1;-1)
C. M(1;0;-2)
D. M(3;1;-3)
Cho tam giác ABC có A(2;3), B(-1; -1), C(6;0)
a) Tìm tọa độ điểm M sao cho \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|\) đạt giá trị nhỏ nhất
b) Tìm tọa độ điểm M∈Ox sao cho \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|\) đạt giá trị nhỏ nhất
c) Tìm tọa độ điểm M thuộc Ox sao cho \(\overrightarrow{u}=\overrightarrow{MA}-4\overrightarrow{MB}\) có độ dài nhỏ nhất
a.
Gọi G là trọng tâm tam giác ABC \(\Rightarrow\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)
\(\Rightarrow T=\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\right|\)
\(=\left|3\overrightarrow{MG}\right|=3\left|\overrightarrow{MG}\right|\)
\(\Rightarrow T_{min}\) khi và chỉ khi \(MG_{min}\Rightarrow MG=0\) hay M trùng G
Theo công thức trọng tâm: \(\left\{{}\begin{matrix}x_M=\dfrac{2-1+6}{3}=\dfrac{7}{3}\\y_M=\dfrac{3-1+0}{3}=\dfrac{2}{3}\end{matrix}\right.\) \(\Rightarrow M\left(\dfrac{7}{3};\dfrac{2}{3}\right)\)
b.
Tương tự câu a, ta có \(T=3\left|\overrightarrow{MG}\right|\) đạt min khi MG đạt min
\(\Rightarrow\) M là hình chiếu vuông góc của G lên Ox
Mà \(G\left(\dfrac{7}{3};\dfrac{2}{3}\right)\Rightarrow M\left(\dfrac{7}{3};0\right)\)
c.
Do M thuộc Ox nên tọa độ có dạng: \(M\left(m;0\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(2-m;3\right)\\\overrightarrow{MB}=\left(-1-m;-1\right)\end{matrix}\right.\)
\(\Rightarrow\overrightarrow{u}=\left(3m+6;7\right)\)
\(\Rightarrow\left|\overrightarrow{u}\right|=\sqrt{\left(3m+6\right)^2+7^2}\ge\sqrt{0+7^2}=7\)
Dấu "=" xảy ra khi \(3m+6=0\Rightarrow m=-2\)
\(\Rightarrow M\left(-2;0\right)\)
Bài 1:
Cho điểm I thuộc đoạn thẳng AB, I khác A và B. Chứng minh rằng \(\overrightarrow{OI}=\frac{IB}{IA}\overrightarrow{OA}+\frac{IA}{AB}\overrightarrow{OB}\forall O\)
Bài 2:
Cho tam giác ABC, các điểm M,N,P thỏa mãn \(\overrightarrow{BM}=\frac{-1}{3}\overrightarrow{BC},\overrightarrow{AN}=\frac{2}{5}\overrightarrow{AC},\overrightarrow{AP}=x\overrightarrow{AB}.\)Tìm x biết rằng M,N,P thẳng hàng.
Ai giúp mình với chiều mai kiểm tra 2 bài này rồi mà mình nháp mãi chẳng ra.... :<