giải và biện luận pt sau:
\(x^2+4x-2\left|x-m\right|+2-m=0\)
giải và biện luận pt:
a) \(x^2-4x+m+1=0\)\
b) \(\left(m+1\right)x^2-2\left(m+2\right)x+m-3=0\)
giải và biện luận pt:
\(\left(m^2-1\right)x^2-2\left(m-1\right)x+1=0\)
Với \(m=-1\Leftrightarrow4x+1=0\Leftrightarrow x=-\dfrac{1}{4}\)
Với \(m=1\Leftrightarrow1=0\Leftrightarrow x\in\varnothing\)
Với \(m\ne\pm1\)
\(\Delta=4\left(m-1\right)^2-4\left(m^2+1\right)\\ \Delta=4m^2-8m+4-4m^2-4\\ \Delta=-8m\)
PT vô nghiệm \(\Leftrightarrow-8m< 0\Leftrightarrow m>0\)
PT có nghiệm kép \(\Leftrightarrow-8m=0\Leftrightarrow m=0\)
Khi đó \(x=\dfrac{2\left(m-1\right)}{2\left(m^2-1\right)}=\dfrac{1}{m+1}\)
PT có 2 nghiệm phân biệt \(\Leftrightarrow-8m>0\Leftrightarrow m< 0\)
Khi đó \(\left[{}\begin{matrix}x_1=\dfrac{2\left(m-1\right)-\sqrt{-8m}}{2\left(m^2-1\right)}\\x_2=\dfrac{2\left(m-1\right)+\sqrt{-8m}}{2\left(m^2+1\right)}\end{matrix}\right.\)
Giải, biện luận PT: \(\left(m+2\right)x^2-2\left(m-1\right)x+3-m=0\)
TH1: m=-2
Phương trình sẽ trở thành:
\(\left(-2+2\right)x^2-2\left(-2-1\right)x+3-\left(-2\right)=0\)
=>6x+5=0
=>x=-5/6
TH2: m<>-2
\(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\left(m+2\right)\left(3-m\right)\)
\(=4\left(m^2-2m+1\right)+4\left(m^2-m-6\right)\)
\(=4\left(2m^2-3m-5\right)\)
\(=4\left(2m-5\right)\left(m+1\right)\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
=>4(2m-5)(m+1)>0
=>(2m-5)(m+1)>0
=>\(\left[{}\begin{matrix}m>\dfrac{5}{2}\\m< -1\end{matrix}\right.\)
Để phương trình có nghiệm kép thì Δ=0
=>4(2m-5)(m+1)=0
=>(2m-5)(m+1)=0
=>\(\left[{}\begin{matrix}m=\dfrac{5}{2}\\m=-1\end{matrix}\right.\)
Để phương trình vô nghiệm thì Δ<0
=>(2m-5)(m+1)<0
=>\(-1< m< \dfrac{5}{2}\)
giải và biện luận pt có m là hằng số
\(\frac{m^2\left[\left(x+2\right)^2-\left(x-2\right)^2\right]}{8}-4x=\left(m-1\right)^2+3\left(2m+1\right)\)
Ta có :
\(\frac{m^2\left[\left(x+2\right)^2-\left(x-2\right)^2\right]}{8}-4x=\left(m-1\right)^2+3\left(2m+1\right)\)
\(\Leftrightarrow m^2x-4x=m^2+4m+4\)
\(\Leftrightarrow\left(m-2\right)\left(m+2\right)x=\left(m+2\right)^2\)
- Nếu \(m\ne\pm2\) thì \(x=\frac{m+2}{m-2}\)
- Nếu \(m=2\) thì \(0x=16\)
=> P/trình vô nghiệm .
- Nếu \(m=-2\) thì \(0x=0\)
=> PT có nghiệm bất kì
.....
Giải pt và biện luận pt ẩn x sau
\(\left(m^2-1\right)x=m+1\)
bài dễ mà :)
Pt ẩn x : \(\left(m^2-1\right)x=m+1\) ( 1 )
\(\Leftrightarrow\)\(\left(m+1\right)\left(m-1\right)x=m+1\)
- Nếu \(m^2-1\ne0\Leftrightarrow m^2\ne1\Leftrightarrow m\ne\pm1\)
Pt ( 1 ) có nghiệm : \(x=\frac{m+1}{\left(m+1\right)\left(m-1\right)}=\frac{1}{m-1}\)
Nếu \(m+1=0\Leftrightarrow m=-1\)
Pt ( 1 ) có dạng 0x = 0 pt vô số nghiệm
Nếu \(m-1=0\Leftrightarrow m=1\)
Pt ( 1 ) có dạng 0x = 2 pt vô nghiệm
Vậy * \(m\ne\pm1\)pt ( 1 ) có nghiệm duy nhất \(x=\frac{1}{m-1}\)
* \(m=-1\)pt ( 1 ) vô số nghiệm
* \(m=1\)pt ( 1 ) vô nghiệm
\(\left(m^2-1\right)x=m+1\) \(\left(1\right)\)
+) Nếu \(m^2-1\ne0\Leftrightarrow m\ne\pm1\)
Phương trình có nghiệm duy nhất \(x=\frac{m+1}{m^2-1}=\frac{1}{m-1}\)
+) Nếu \(m=1\)
\(\left(1\right)\Leftrightarrow0x=2\) ( vô lí )
+) Nếu \(m=-1\)
\(\left(1\right)\Leftrightarrow0x=0\) ( luôn đúng )
Vậy với \(m\ne\pm1\) phương trình có 1 nghiệm duy nhất \(x=\frac{1}{m-1}\)
với m =1 thì phương trình vô nghiệm
với m = -1 thì phương trình có nghiệm đúng với mọi x
Bài giải đã được 3 tháng mà m vẫn còn nhai lại bài t giải hay sao hã ?????
Giải và biện luận phương trình
\(x^2+4x-2\left|x-m\right|+2-m=0\)
Gỉai và biện luận pt , m là hằng số
\(\frac{m^2\left[\left(x+2\right)^2-\left(x-2\right)^2\right]}{8}-4x=\left(m-1\right)^2+3\left(2m+1\right)\)
\(\frac{m^2\left[\left(x+2\right)^2-\left(x-2\right)^2\right]}{8}-4x=\left(m-1\right)^2+3\left(2m+1\right)\)
\(\Leftrightarrow\frac{m^2\left(x^2+4x+4-x^2+4x-4\right)}{8}-4x=\)\(m^2-2m+1+6m+3\)
\(\Leftrightarrow\frac{m^2.8x}{8}-4x=m^2+4m+4\)
\(\Leftrightarrow m^2x-4x=m^2+4m+4\)
\(\Leftrightarrow x\left(m^2-4\right)=\left(m+2\right)^2\) \(\left(1\right)\)
+) Nếu \(m^2-4\ne0\Leftrightarrow m^2\ne4\Leftrightarrow m\ne\pm2\)
Phương trình có nghiệm duy nhất \(x=\frac{\left(m+2\right)^2}{m^2-4}=\frac{\left(m+2\right)^2}{\left(m+2\right)\left(m-2\right)}=\frac{m+2}{m-2}\)
+) Nếu \(m=2\)
\(\left(1\right)\Leftrightarrow x\left(2^2-4\right)=\left(2+2\right)^2\)
\(\Leftrightarrow0=16\) ( vô lí )
\(\Rightarrow\)Phương trình trên vô nghiệm
+) Nếu \(m=-2\)
\(\left(1\right)\Leftrightarrow x\left[\left(-2\right)^2-4\right]=\left(-2+2\right)^2\)
\(\Leftrightarrow0=0\)( đúng )
\(\Rightarrow\)Phương trình có nghiệm đúng với mọi x
Vậy : - Nếu \(m\ne\pm2\)phương trình có nghiệm duy nhất \(x=\frac{m+2}{m-2}\)
- Nếu m = 2 thì phương trình vô nghiệm
- Nếu m = -2 thì phương trình có nghiệm đúng với mọi x
tìm giá trị của m để pt sau có nghiệm duy nhất
\(2x^2-\left|x\right|+m^2-1=0\)
giải và biện luận các pt
\(\left(x^2-3x+2\right)^2+\left(x^2-3x+2\right)=0\)
\(x^2-\left|x\right|+m=0\)
\(\left(1-m\right)x^2-2x+2m=0\)
Bài 2:
a: \(\Leftrightarrow\left(x^2-3x+2\right)\left(x^2-3x+3\right)=0\)
=>x^2-3x+2=0
=>x=2 hoặc x=1
b: \(\Leftrightarrow\left(\left|x\right|\right)^2-\left|x\right|+m=0\)
Để phương trình có nghiệm thì \(\text{Δ}>=0\)
=>1-4m>=0
=>m<=1/4
Để phương trình vô nghiệm thì Δ<0
=>m>1/4
c: TH1: m=1
=>-2x+2=0
=>x=1
TH2: m<>1
\(\text{Δ}=\left(-2\right)^2-4\left(1-m\right)\cdot2m\)
\(=4+8m\left(m-1\right)\)
\(=8m^2-8m+4\)
Để phương trình có nghiệm thì Δ>=0
=>\(m\in R\)
Giải và biện luận theo m sô nghiệm của pt
a)\(mx^2\)+ (2m-1)x+ m+2=0
b)\(\left(m-2\right)x^2\)-2(m+1)x+ m