cho xôy =120, điểm A thuộc tia phân giác của góc đó, kẻ AB vuông góc 0x (B thuộc 0x), kẻ AC vuông góc 0y (C thuộc 0y) chứng minh tam giác ABC là tam giác đều?
Cho góc vuông x0y và tam giác vuông cân ABC :góc A=90 độ ( B thuộc tia 0x , C thuộc tia 0y ).A và 0 là 2 nửa mp đối nhau bờ BC . Chứng minh rằng 0A là tia phân giác góc x0y
Cho góc xOy có số đo 120 độ , điểm A thuộc tia phân giác của góc đó. Kẻ AB vuông góc với Ox (B thuộc Ox), kẻ AC vuông góc với Oy (C thuộc Oy). Tam giác ABC là tam giác gì ? Vì sao ?
Xét ΔABO vuông tại B và ΔACO vuông tại C có
OA chung
\(\widehat{BOA}=\widehat{COA}\)
Do đó: ΔABO=ΔACO
Suy ra: AB=AC
hay ΔABC cân tại A
mà \(\widehat{CAB}=180^0-120^0=60^0\)
nên ΔABC đều
Cho góc xOy có số đo 120 độ, điểm A thuộc tia phân giác của góc đó. Kẻ AB vuông góc với Ox ( B thuộc Ox), kẻ AC vuông góc với Oy ( C thuộc Oy). Tam giác ABC là tam giác gì? Vì sao?
Bài này mình biết làm nhưng không biết vẽ hình trên máy tính
mk k cần vẽ hình, chỉ cần giải thôi
Cho \(xOy=120^0\), điểm A thuộc tia phân giác của góc đó. Kẻ AB vuông góc với Ox (B thuộc Ox), kẻ AC vuông góc với Oy (C thuộc Oy). Tam giác ABC là tam giác gì? Vì sao?
Ta có hình vẽ:
Δ OBA vuông tại B có: A1 + O1 = 90o (1)
Δ OCA vuông tại C có: A2 + O2 = 90o (2)
Từ (1) và (2) lại có: O1 = O2 vì OA là phân giác của BOC
=> A1 = A2
Xét Δ OBA và Δ OCA có:
A1 = A2 (cmt)
OA là cạnh chung
O1 = O2 (cmt)
Do đó, Δ OBA = Δ OCA (c.g.c)
=> AB = AC (2 cạnh tương ứng)
=> Δ ABC là tam giác cân tại A
Ta có:tam giác OBA vuông tại B
Suy ra:góc BAO+AOB=90 độ
Lại có:tam giác OCA vuông tại C
Suy ra:góc CAO+AOC=90 độ
Mà góc AOB=AOC
Suy ra:góc BAO=góc CAO
xÉT tam giác ABO và tam giác ACO theo trường hợp cạnh huyền-góc nhon.
Suy ra:AB=AC(hai cạnh tương ứng)
Suy ra:tam giác ABC là tam giác cân do AB=AC
Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )
a,chứng minh rằng IA=IB
b, Tính độ dài IC
c, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IK
Bài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AE
a, chứng minh rằng BE=CD
b, chứng minh rằng góc ABE bằng góc ACD
c, Gọi K là giao điểm của BE và CD. Tam giác KBC là tam giác gì? Vì sao?
Bài 3: Cho tam giác ABC vuông ở C, có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E kẻ CK vuông góc với AB (K thuộc AB) kẻ BD vuông góc với tia AE (D thuộc tia AE)chứng minh:
a, AC=AK và AE vuông góc CK
b,KB=KA
c, EB > AC
d, ba đường AC,BD,KE cùng đi qua 1 điểm
Bài 4: Cho tam giác nhọn ABC vẽ ra phía ngoài tam giác ABC các tam giác đều ABD và ACE .Gọi M là giao điểm của DC và BE Chứng minh rằng:
a, tam giác ABE=tam giác ADC
b,góc BMC=120°
Bài 5: Cho tam giác ABC vuông ở C ,có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E,kẻ EK vuông góc với AB( K thuộc AB)kẻ BD vuông góc với AE (D thuộc AE) chứng minh
a,AK=KB
b, AD=BC
C1 :
Hình : tự vẽ
a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C
mà CI vuông góc vs AB => CI là đường cao của tam giác ABC
=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )
=> IA=IB (đpcm)
C1 :
b) Có IA=IB ( cm phần a )
mà IA+IB = AB
IA + IA = 12 (cm)
=> IA = \(\frac{12}{2}=6\left(cm\right)\)
Xét tam giác vuông CIA có : CI2 + IA2 = CA2 ( Đ/l Py-ta -go )
CI2 + 62 = 102
CI2 = 102 - 62 = 64
=> CI = \(\sqrt{64}=8\left(cm\right)\)
Vậy CI ( hay IC ) = 8cm
Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM ?
Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH bằng tam giác MBH, tam giác ACE= tam giác AKE?
Bài 3: Cho tam giác ABC vuông tại C có góc A = 60* và đường phân gác của góc BAC cắt BC tại E. Kẻ EK vuông góc AB tại K (K thuộc AB). Kẻ BD vuông góc với AE tại D (D thuộc AE). Chứng minh tam giác ACE = tam giác AKE
Bài 4: Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc BC tại H (H thuộc BC). Chứng minh tam giác ABE = tam giác HBE ?
Cho góc xoy = 1200 Điểm A thuộc tia phân giác của góc đó. Kẻ AB vuông góc với
Ox (B thuộc Ox) ; AC vuông góc với Oy (C thuộc Oy). Chứng minh rằng:
a/ AB = AC b/ AO ⊥ BC
c/ Tam giác ABC là tam giác gì ? Vì sao ?
d/Kẻ BE vuông góc với phần kéo dài của Oy tại E. Cho OE = 3cm; OC = 5cm. Tính BC?
Cho góc xOy có số đo \(120^0\), điểm A thuộc tia phân giác của góc đó. Kẻ AB vuông góc với Ox (B thuộc Ox), kẻ AC vuông góc với Oy (C thuộc Oy). Tam giác ABC là tam giác gì ? Vì sao ?
Hai tam giác vuông ACO và ABO có:
ˆO1O1^=ˆO2O2^(gt)
AO chung
Nên suy ra ∆ACO=∆ABO(cạnh huyền góc nhọn)
Suy ra AC=AB.
Vây ∆ABC là tam giác cân(AB=AC).
cho góc xOy = 120độ, điểm A thuộc tia phân giác của góc đó. kẻ AB vuông góc với Ox (B thuộc Ox), kẻ AC vuông góc với Oy (C thuộc Oy) Tam giác ABC là tam giác j?
Hình thím tự vẽ:
(tại cái bài lúc nãy đang làm gần xong cái tự nhiên "Ôi hỏng!!")
Gọi M là giao điểm của OA và BC
-Xét tam giác OAB và tam giác OAC có:
\(\widehat{AOB}\)=\(\widehat{AOC}\) (GT)
OA: cạnh chung
\(\widehat{B}\)=\(\widehat{C}\)=900 (GT)
=> tam giác OAB = tam giác OAC
(theo trường hợp cạnh huyền góc nhọn)
Ta có: OA là phân giác góc O
\(\widehat{AOB}\)=\(\widehat{AOC}\) = \(\frac{1}{2}\)\(\widehat{O}\) = \(\frac{1}{2}\)1200 = 600
Trong tam giác OAB có:
\(\widehat{O}\)+\(\widehat{A}\)+\(\widehat{B}\)=1800 (tổng 3 góc trong tam giác)
hay 600 + góc A + 900 = 1800
=> \(\widehat{A}\) = 300
Vì tam giác OAB = tam giác OAC
nên \(\widehat{OAB}\)=\(\widehat{OAC}\)=300
-Xét tam giác ABM và tam giác ACM có:
AM: cạnh chung
\(\widehat{BAM}\)=\(\widehat{CAM}\) (tam giác OAB = tam giác OAC)
AB = AC (tam giác OAB = tam giác OAC)
=> tam giác ABM = tam giác ACM (c.g.c)
=> \(\widehat{AMB}\)=\(\widehat{AMC}\) (2 góc tương ứng)
Mà \(\widehat{AMB}\)+\(\widehat{AMC}\) = 1800 (kề bù)
=> \(\widehat{AMB}\)=\(\widehat{AMC}\)=900
Trong tam giác ABM có:
\(\widehat{BAM}\)+\(\widehat{ABM}\)+\(\widehat{AMB}\)=1800 (tổng 3 góc của tam giác)
hay 300 + góc ABM + 900 = 1800
=> \(\widehat{ABM}\)=600
Vì tam giác ABM = tam giác ACM
nên \(\widehat{ABM}\)=\(\widehat{ACM}\)=600 (2 góc tương ứng)
Ta có: \(\widehat{BAM}\)+\(\widehat{CAM}\)=300+300=600
Trong tam giác ABC có:
\(\widehat{BAC}\)=\(\widehat{ABC}\)=\(\widehat{ACB}\)=600
=> tam giác ABC là tam giác đều
Vậy tam giác ABC là tam giác đều
"Sorry, hôm nay tớ bực bội wa"
\(\Delta BOA\)vuông tại B có: BOA + OAB = 90o
\(\Delta COA\)vuông tại C có: COA + OAC = 90o
Mà BOA = COA vì OA là tia phân giác của BOC
=> OAB = OAC
Xét \(\Delta BOA\) và \(\Delta COA\) có:
BOA = COA (cmt)
OA là cạnh chung
BAO = CAO (cmt)
Do đó, \(\Delta BOA=\Delta COA\left(c.g.c\right)\)
=> AB = AC (2 cạnh tương ứng)
Như vậy tam giac ABC cân tại A