bài1 giải hệ phương trình\(\left\{{}\begin{matrix}\frac{6}{x+y}+\frac{11}{x-y}=21\\\frac{6}{x+y}+\frac{5}{x-y}=9\end{matrix}\right.\)
giải hệ phương trình
1 , \(\left\{{}\begin{matrix}\left(x+y\right)\left(x-1\right)=\left(x-y\right)\left(x+1\right)+2xy\\\left(y-x\right)\left(y-1\right)=\left(y+x\right)\left(y-2\right)-2xy\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}2\left(\frac{1}{x}+\frac{1}{2y}\right)+3\left(\frac{1}{x}-\frac{1}{2y}\right)^2=9\\\left(\frac{1}{x}+\frac{1}{2y}\right)-6\left(\frac{1}{x}-\frac{1}{2y}\right)^2=-3\end{matrix}\right.\)
3 , \(\left\{{}\begin{matrix}\frac{xy}{x+y}=\frac{2}{3}\\\frac{yz}{y+z}=\frac{6}{5}\\\frac{zx}{z+x}=\frac{3}{4}\end{matrix}\right.\)
4 , \(\left\{{}\begin{matrix}2xy-3\frac{x}{y}=15\\xy+\frac{x}{y}=15\end{matrix}\right.\)
5 , \(\left\{{}\begin{matrix}x+y+3xy=5\\x^2+y^2=1\end{matrix}\right.\)
6 , \(\left\{{}\begin{matrix}x+y+xy=11\\x^2+y^2+3\left(x+y\right)=28\end{matrix}\right.\)
7, \(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=4\\x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\end{matrix}\right.\)
8, \(\left\{{}\begin{matrix}x+y+xy=11\\xy\left(x+y\right)=30\end{matrix}\right.\)
9 , \(\left\{{}\begin{matrix}x^5+y^5=1\\x^9+y^9=x^4+y^4\end{matrix}\right.\)
hệ phương trình
1, \(\left\{{}\begin{matrix}3x=6\\x-3y=2\end{matrix}\right.\)
2,\(\left\{{}\begin{matrix}3x+5y=15\\2y=-7\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}7x-2y=1\\3x+y=6\end{matrix}\right.\)
4, \(\left\{{}\begin{matrix}3\left(x+y\right)+9=2\left(x-y\right)\\2\left(x+y\right)=3\left(x-y\right)+11\end{matrix}\right.\)
5 , \(\left\{{}\begin{matrix}3\left(x+y\right)+5\left(x-y\right)=12\\-5\left(x+y\right)+2\left(x-y\right)=11\end{matrix}\right.\)
6 , \(\left\{{}\begin{matrix}2\left(3x-2\right)-4=5\left(3y+2\right)\\4\left(3x-2\right)+7\left(3y+2\right)=-2\end{matrix}\right.\)
7, \(\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y}=\frac{4}{5}\\\frac{1}{x}-\frac{1}{y}=\frac{1}{5}\end{matrix}\right.\)
8 , \(\left\{{}\begin{matrix}\frac{15}{x}-\frac{7}{y}=9\\\frac{4}{x}+\frac{9}{y}=35\end{matrix}\right.\)
có ái đó giúp mình với mình đang cần gấp
hệ phương trình
1, \(\left\{{}\begin{matrix}\frac{1}{x+y}+\frac{1}{x-y}=\frac{5}{8}\\\frac{1}{x+y}-\frac{1}{x-y}=-\frac{3}{8}\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}\frac{4}{2x-3y}+\frac{5}{3x+y}=2\\\frac{3}{3x+y}-\frac{5}{2x-3y}=21\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}\frac{7}{x-y+2}+\frac{5}{x+y-1}=\frac{9}{2}\\\frac{3}{x-y+2}+\frac{2}{x+y-1}=4\end{matrix}\right.\)
4, \(\left\{{}\begin{matrix}\frac{3}{x}+\frac{5}{y}=-\frac{3}{2}\\\frac{5}{x}-\frac{2}{y}=\frac{8}{3}\end{matrix}\right.\)
5 , \(\left\{{}\begin{matrix}\frac{2}{x+y-1}-\frac{4}{x-y+1}=-\frac{14}{5}\\\frac{3}{x+y-1}+\frac{2}{x-y+1}=-\frac{13}{5}\end{matrix}\right.\)
6 , \(\left\{{}\frac{\frac{2x-3}{2y-5}=\frac{3x+1}{3y-4}}{2\left(x-3\right)-3\left(y+20=-16\right)}}\)
7\(\left\{{}\begin{matrix}\left(x+3\right)\left(y+5\right)=\left(x+1\right)\left(y+8\right)\\\left(2x-3\right)\left(5y+7\right)=2\left(5x-6\right)\left(y+1\right)\end{matrix}\right.\)
giải hệ phương trình
a)\(\left\{{}\begin{matrix}\frac{2}{x-1}+\frac{1}{2y+1}=\frac{6}{5}\\\frac{3}{x-1}-\frac{2}{2y+1}=\frac{11}{10}\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}2\left(x+y\right)+\sqrt{x+1}=4\\\left(x+y\right)-3\sqrt{x+1}=-5\end{matrix}\right.\)
a/ ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\frac{1}{x-1}=u\\\frac{1}{2y+1}=v\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2u+v=\frac{6}{5}\\3u-2v=\frac{11}{10}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u=\frac{1}{2}\\v=\frac{1}{5}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-1=2\\2y+1=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
b/ ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}x+y=u\\\sqrt{x+1}=v\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2u+v=4\\u-3v=-5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u=1\\v=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=1\\\sqrt{x+1}=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=1-x\\x+1=4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3\\y=-2\end{matrix}\right.\)
Giải hệ phương trình :
1, \(\left\{{}\begin{matrix}\frac{2}{x}+\frac{3}{y-2}=4\\\frac{4}{x}+\frac{1}{y-2}=1\end{matrix}\right.\)
2 , \(\left\{{}\begin{matrix}\frac{2}{2x-y}-\frac{1}{x+y}=0\\\frac{3}{2x-y}-\frac{6}{x+y}=-1\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}5\left(x+2y\right)=3x-1\\2x+4=3\left(x-2y\right)-15\end{matrix}\right.\)
4, \(\left\{{}\begin{matrix}2x+y=7\\-x+4y=10\end{matrix}\right.\)
1/ ĐKXĐ:...
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{2}{x}+\frac{3}{y-2}=4\\\frac{12}{x}+\frac{3}{y-2}=3\end{matrix}\right.\) \(\Rightarrow\frac{10}{x}=-1\Rightarrow x=-10\)
\(\frac{4}{-10}+\frac{1}{y-2}=1\Rightarrow\frac{1}{y-2}=\frac{7}{5}\Rightarrow y-2=\frac{5}{7}\Rightarrow y=\frac{19}{7}\)
2/ ĐKXĐ:...
Đặt \(\left\{{}\begin{matrix}\frac{1}{2x-y}=a\\\frac{1}{x+y}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2a-b=0\\3a-6b=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{9}\\b=\frac{2}{9}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{1}{2x-y}=\frac{1}{9}\\\frac{1}{x+y}=\frac{2}{9}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x-y=9\\x+y=\frac{9}{2}\end{matrix}\right.\) \(\Rightarrow...\)
3/ \(\Leftrightarrow\left\{{}\begin{matrix}5x+10y=3x-1\\2x+4=3x-6y-15\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+10y=-1\\-x+6y=-19\end{matrix}\right.\) \(\Rightarrow...\)
4/ Bạn tự giải
Giải hệ phương trình sau
a. \(\left\{{}\begin{matrix}x^2+y^2+2\left(x+y\right)=23\\x+y+xy=11\end{matrix}\right.\)
b. \(\left\{{}\begin{matrix}x^2+4x+y=0\\\left(x+2\right)^2+5y=16\end{matrix}\right.\)
c. \(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=5\\x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=9\end{matrix}\right.\)
Giải hệ:
a,\(\left\{{}\begin{matrix}3\left(x-y\right)-y=11\\x-2\left(x+5y\right)=-15\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}\frac{x+y}{3}-\frac{2}{3}=2\\\frac{4x-y}{6}+\frac{x}{4}=1\end{matrix}\right.\)
a/ \(\Leftrightarrow\left\{{}\begin{matrix}3x-4y=11\\-x-10y=-15\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=5\\y=1\end{matrix}\right.\)
b/ \(\Leftrightarrow\left\{{}\begin{matrix}x+y=8\\\frac{2x}{3}+\frac{x}{4}-\frac{y}{6}=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=8\\\frac{11}{12}x-\frac{y}{6}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=8\\11x-2y=12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{28}{13}\\y=\frac{76}{13}\end{matrix}\right.\)
hệ phương trình
1 ,\(\left\{{}\begin{matrix}\frac{2x-3}{2y-5}=\frac{3x+1}{3y-4}\\2\left(x-3\right)-3\left(y+2\right)=-16\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}\frac{x}{y}=\frac{3}{2}\\3x-2y=5\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}\frac{x^2-y-6}{x}=x-2\\x+3y=8\end{matrix}\right.\)
4, \(\left\{{}\begin{matrix}\frac{x}{y}=\frac{2}{3}\\x+y=10\end{matrix}\right.\)
5, \(\left\{{}\begin{matrix}\frac{y^2+2x-8}{y}=y-3\\x+y=10\end{matrix}\right.\)
6 , \(\left\{{}\begin{matrix}\frac{x+1}{y-1}=5\\3\left(2x-2\right)-4\left(3x+4\right)=5\end{matrix}\right.\)
7, \(\left\{{}\begin{matrix}2x+y=4\\\left|x-2y\right|=3\end{matrix}\right.\)
8 , \(\left\{{}\begin{matrix}\frac{2x}{x+1}+\frac{y}{y+1}=3\\\frac{x}{x+1}-\frac{3y}{y+1}=-1\end{matrix}\right.\)
9 , \(\left\{{}\begin{matrix}y-\left|x\right|=1\\2x-y=1\end{matrix}\right.\)
10 , \(\left\{{}\begin{matrix}\sqrt{x+3y}=\sqrt{3x-1}\\5x-y=9\end{matrix}\right.\)
Giải các hệ phương trình sau
a)\(\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y+1}=1\\2x+3y=xy+5\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\left(x-y\right)^2+3\left(x-y\right)=4\\2x+3y=12\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}\frac{x}{y}+\frac{y}{x}=\frac{13}{6}\\x+y=5\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}x+y+xy=7\\x+y^2+xy=13\end{matrix}\right.\)