\(\left\{ \begin{array}{l} \dfrac{6}{{x + y}} + \dfrac{{11}}{{x - y}} = 21\\ \dfrac{6}{{x + y}} + \dfrac{5}{{x - y}} = 9 \end{array} \right.\)
Đặt \(\left\{ \begin{array}{l} t = \dfrac{1}{{x + y}}\\ r = \dfrac{1}{{x - y}} \end{array} \right. \Rightarrow \left\{ \begin{array}{l} 6t - 11r = 21\\ 6t + 5r = 9 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} t = \dfrac{{17}}{8}\\ r = - \dfrac{3}{4} \end{array} \right.\)
Với \(\left\{ \begin{array}{l} t = \dfrac{{17}}{8}\\ r = - \dfrac{3}{4} \end{array} \right. \Rightarrow \left\{ \begin{array}{l} \dfrac{1}{{x + y}} = \dfrac{{17}}{8}\\ \dfrac{1}{{x - y}} = - \dfrac{3}{4} \end{array} \right. \Rightarrow \left\{ \begin{array}{l} x = - \dfrac{{22}}{{51}}\\ y = \dfrac{{46}}{{51}} \end{array} \right.\)
\(\left\{{}\begin{matrix}\frac{6}{x+y}+\frac{11}{x-y}=21\\\frac{6}{x+y}+\frac{5}{x-y}=9\end{matrix}\right.\) (*)
Đặt \(\frac{1}{x+y}\) là a; \(\frac{1}{x-y}\) là b.
Phương trình (*) trở thành:
\(\left\{{}\begin{matrix}6a+11b=21\\6a+5b=9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}6b=12\\6a+5b=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=2\\a=-\frac{1}{6}\end{matrix}\right.\)
Ta có:
\(\left\{{}\begin{matrix}\frac{1}{x+y}=-\frac{1}{6}\\\frac{1}{x-y}=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\frac{1}{6}\left(x+y\right)=1\\6\left(x-y\right)=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-\frac{1}{6}x-\frac{1}{6}y=1\\6x-6y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}-\frac{1}{6}\left(\frac{1+6y}{6}\right)-\frac{1}{6}y=1\\x=\frac{1+6y}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\frac{37}{12}\\x=-\frac{35}{12}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\frac{6}{x+y}+\frac{11}{x-y}=21\\\frac{6}{x+y}+\frac{5}{x-y}=9\end{matrix}\right.\)
Đặt u = \(\frac{1}{x+y}\)
v = \(\frac{1}{x-y}\)
Ta có:
<=>\(\left\{{}\begin{matrix}6u+11v=21\\6u+5v=9\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}6v=12\\6u+5v=9\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}v=2\\6u+5.2=9\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}v=2\\6u=-1\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}v=2\\u=-\frac{1}{6}\end{matrix}\right.\)