Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Thị Thúy
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 7 2021 lúc 11:57

Với \(xy=0\) là nghiệm

Với \(xy\ne0\)

\(\Rightarrow\left\{{}\begin{matrix}y-\dfrac{2}{x}+\dfrac{3x}{y}=0\\\dfrac{y}{x}+x+\dfrac{2}{y}=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y-\dfrac{2}{x}=-\dfrac{3x}{y}\\x+\dfrac{2}{y}=-\dfrac{y}{x}\end{matrix}\right.\)

\(\Rightarrow\left(y-\dfrac{2}{x}\right)\left(x+\dfrac{2}{y}\right)=3\)

\(\Leftrightarrow xy-\dfrac{4}{xy}-3=0\)

\(\Rightarrow\left(xy\right)^2-3xy-4=0\Rightarrow\left[{}\begin{matrix}xy=-1\\xy=4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{y}\\x=\dfrac{4}{y}\end{matrix}\right.\) thế vào \(y^2+x^2y+2x=0\)

\(\Rightarrow\left[{}\begin{matrix}y^2+\dfrac{1}{y}-\dfrac{2}{y}=0\\y^2+\dfrac{16}{y}+\dfrac{8}{y}=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}y^3=1\\y^3=-24\end{matrix}\right.\)

\(\Leftrightarrow...\)

Nguyễn Linh
Xem chi tiết
(っ◔◡◔)っ ♥ Aurora ♥
11 tháng 3 2023 lúc 23:29

PT bậc nhất 1 ẩn là: 

a, 3x + 1 = 0

+, Hệ số a: 3

+, Hệ số b: 1

Nguyễn Văn Tuân
Xem chi tiết
Tạ Duy Phương
12 tháng 11 2015 lúc 20:05

PT (1) <=> x = 3y + 3. Thay  x = 3y + 3 vào PT (2) ta có: \(\left(3y+3\right)^2+y^2-2\left(3y+3\right)-2y-9=0\Leftrightarrow10y^2+10y-6=0\Leftrightarrow y=\frac{-5+\sqrt{85}}{10}\)hoặc \(y=\frac{-5-\sqrt{85}}{10}\)

- Nếu \(y=\frac{-5+\sqrt{85}}{10}\) \(\Rightarrow x=3y+3=\frac{15+3\sqrt{85}}{10}\)

- Nếu \(y=\frac{-5-\sqrt{85}}{10}\Rightarrow x=3y+3=\frac{15-3\sqrt{85}}{10}\) 

Mai Thị Thúy
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 7 2021 lúc 22:09

\(\left\{{}\begin{matrix}x^3y^2+x^2y^3+x^3y+2x^2y^2+xy^3-30=0\\x^2y+xy^2+xy+x+y-11=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2y^2\left(x+y\right)+xy\left(x+y\right)^2-30=0\\xy\left(x+y\right)+xy+x+y-11=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)\left[xy+x+y\right]-30=0\\xy\left(x+y\right)+xy+x+y-11=0\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}xy\left(x+y\right)=u\\xy+x+y=v\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}uv-30=0\\u+v-11=0\end{matrix}\right.\)  \(\Rightarrow\left(u;v\right)=\left(6;5\right);\left(5;6\right)\)

TH1: \(\left\{{}\begin{matrix}xy\left(x+y\right)=6\\xy+x+y=5\end{matrix}\right.\)

Theo Viet đảo \(\Rightarrow\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)hoặc \(\left\{{}\begin{matrix}x+y=2\\xy=3\end{matrix}\right.\)(vô nghiệm)

TH2: \(\left\{{}\begin{matrix}xy\left(x+y\right)=5\\xy+x+y=6\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}x+y=5\\xy=1\end{matrix}\right.\) \(\Rightarrow...\) hoặc \(\left\{{}\begin{matrix}x+y=1\\xy=5\end{matrix}\right.\) (vô nghiệm)

2 câu dưới hình như em hỏi rồi?

Đinh Doãn Nam
Xem chi tiết
Nhi@
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 8 2023 lúc 15:13

a: \(\left\{{}\begin{matrix}2x-2y+z=3\\2x+y-2z=-3\\3x-4y-z=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x-4y+2z=6\\8x+4y-8z=-3\\3x-4y-z=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}12x-6z=3\\11x-9z=1\\3x-4y-z=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\z=\dfrac{1}{2}\\4y=3x-z-4=\dfrac{3}{2}-\dfrac{1}{2}-4=1-4=-3\end{matrix}\right.\)

=>x=1/2;z=1/2;y=-3/4

Lê Tài Bảo Châu
Xem chi tiết
Kiệt Nguyễn
17 tháng 10 2020 lúc 13:22

a) \(ĐK:y-2x+1\ge0;4x+y+5\ge0;x+2y-2\ge0,x\le1\)

Th1: \(\hept{\begin{cases}y-2x+1=0\\3-3x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}0=0\\-1=\sqrt{10}-1\end{cases}}\)(không thỏa mãn)

Th2: \(x,y\ne1\)

\(2x^2-y^2+xy-5x+y+2=\sqrt{y-2x+1}-\sqrt{3-3x}\)\(\Leftrightarrow\left(x+y-2\right)\left(2x-y-1\right)=\frac{x+y-2}{\sqrt{y-2x+1}+\sqrt{3-3x}}\)\(\Leftrightarrow\left(x+y-2\right)\left(\frac{1}{\sqrt{y-2x+1}+\sqrt{3-3x}}+y-2x+1\right)=0\)

Dễ thấy \(\frac{1}{\sqrt{y-2x+1}+\sqrt{3-3x}}+y-2x+1>0\)nên x + y - 2 = 0

Thay y = 2 - x vào phương trình \(x^2-y-1=\sqrt{4x+y+5}-\sqrt{x+2y-2}\), ta được: \(x^2+x-3=\sqrt{3x+7}-\sqrt{2-x}\)\(\Leftrightarrow x^2+x-2=\sqrt{3x+7}-1+2-\sqrt{2-x}\)\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=\frac{3\left(x+2\right)}{\sqrt{3x+7}+1}+\frac{x+2}{2+\sqrt{2-x}}\)\(\Leftrightarrow\left(x+2\right)\left(\frac{3}{\sqrt{3x+7}+1}+\frac{1}{2+\sqrt{2-x}}+1-x\right)=0\)

Vì \(x\le1\)nên\(\frac{3}{\sqrt{3x+7}+1}+\frac{1}{2+\sqrt{2-x}}+1-x>0\)suy ra x = -2 nên y = 4

Vậy nghiệm của hệ phương trình là (x;y) = (-2;4)

Khách vãng lai đã xóa
Kiệt Nguyễn
17 tháng 10 2020 lúc 18:48

b) \(\hept{\begin{cases}x^2+y^2=5\\x^3+2y^3=10x-10y\end{cases}}\Leftrightarrow\hept{\begin{cases}2\left(x^2+y^2\right)=10\left(1\right)\\x^3+2y^3=10\left(x-y\right)\left(2\right)\end{cases}}\)

Thay (1) vào (2), ta được: \(x^3+2y^3=2\left(x^2+y^2\right)\left(x-y\right)\Leftrightarrow\left(2y-x\right)\left(x^2+2y^2\right)=0\)

* Th1: \(x^2+2y^2=0\)(*)

Mà \(x^2\ge0\forall x;2y^2\ge0\forall y\Rightarrow x^2+2y^2\ge0\)nên (*) xảy ra khi x = y = 0 nhưng cặp nghiệm này không thỏa mãn hệ

* Th2: 2y - x = 0 suy ra x = 2y thay vào (1), ta được: \(y^2=1\Rightarrow y=\pm1\Rightarrow x=\pm2\) 

Vậy hệ có 2 nghiệm \(\left(x,y\right)\in\left\{\left(2;1\right);\left(-2;-1\right)\right\}\)

Khách vãng lai đã xóa
Mr Ray
Xem chi tiết
....
Xem chi tiết