Tìm GTLN của R=\(\frac{2018}{\left(x-2\right)^2+\left(x-y\right)^4+8}\)
Tìm GTLN : R=\(\frac{2013}{\left(x-2\right)^2+\left(x-y\right)^4+3}\)
Xét mẫu (x-2)2+(x-y)4+3
R đạt GTLN khi (x-2)2+(x-y)4+3 nhỏ nhất
Ta có \(\left(x-2\right)^2\ge0\)
\(\left(x-y\right)^4\ge0\)
=>(x-2)2+(x-y)4+3\(\ge3\)
Vậy mẫu số đạt GTNN là 3 khi x=y=2
Khi đó GTLN của R là 2013/3
Vì \(\left(x-2\right)^2\ge0\forall x\in R\)
\(\left(x-y\right)^4\ge0\forall x;y\in R\)
\(\Rightarrow\left(x-2\right)^2+\left(x-y\right)^2+3\ge3\forall x;y\in R\)
Để biểu thức\(R_{max}\Leftrightarrow\)\(\left(x-2\right)^2+\left(x-y\right)^4+3=3\Rightarrow\left(x-2\right)^2=\left(x-y\right)^4=0\)
Ta có \(:\)\(\left(x-2\right)^2=0\Rightarrow x=0+2=2\)
Thay \(x=2\)vào \(\left(x-y\right)^4=0\)ta có \(:\)
\(\left(x-y\right)^4=\left(2-y\right)^4=0\Rightarrow y=2-0=2\)
\(\Rightarrow R_{max}=\frac{2013}{\left(2-2\right)^2+\left(2-2\right)^2+3}=\frac{2013}{3}\)
Vậy GTLN của \(R=\frac{2013}{3}\)tại \(x=2;y=2\)
Tìm GTLN của T=\(\frac{-2\left|x-2018\right|-2021}{2020+\left|x-2018\right|}\)
Để \(T_{max}=\frac{-2\left|x-2018\right|-2021}{2020+\left|x-2018\right|}\)
Thì \(2020+\left|x-2018\right|_{min}\)
và \(-2\left|x-2018\right|-2021_{max}\)
Mà \(\left|x-2018\right|\ge0\forall x\Rightarrow-2\left|x-2018\right|\le0\)
\(\Rightarrow T_{max}\Leftrightarrow\left|x-2018\right|_{min}\)
\(\Rightarrow T_{max}=-\frac{2021}{2020}\Leftrightarrow\left|x-2018\right|=0\Leftrightarrow x=0\)
\(\)
RIM LM ĐÚNG NHƯNG SAI KQ NHÁ X = 2018
Bài 1 :
a) Tìm giá trị nhỏ nhất của biểu thức B= |x-2013| .2 + |2x-2014|
b) Tìm x,y,z biết : \(\left|3x-5\right|+\left(5y+7\right)^{2018}+\left(2z-3\right)^{2020}\le0\)
Bài 2 :
a) Tìm a,b biết \(\frac{a+b}{10}=\frac{a-2b}{7}\)và ab=9
b) Tìm GTLN của A : \(A=\frac{15\left|x+2018\right|+32}{6\left|x+2018\right|+8}\)
GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP
tìm x,y để biểu thức đạt GTLN và GTLN là bao nhiêu
G=\(\frac{2012}{x^2+\left(x-2y\right)^2-2\left(x-2y\right)-4x+2018}\)
* GTLN
Ta co: \(x^2+\left(x-2y\right)^2-2\left(x-2y\right)-4x+2018\) \(=x^2-4x+4+\left(x-2y\right)^2-2\left(x-2y\right).1+1+2013\) \(=\left(x-2\right)^2+\left(x-2y-1\right)^2+2013\)Vì \(\left(x-2\right)^2\ge0,\forall x\) \(\left(x-2y-1\right)^2\ge0,\forall x\)\(\Rightarrow\left(x-2\right)^2+\left(x-2y-1\right)^2\ge0\)\(\Rightarrow\left(x-2\right)^2+\left(x-2y-1\right)^2+2013\ge2013\)
\(\Rightarrow\frac{2012}{\left(x-2\right)^2+\left(x-2y-1\right)^2+2013}\le\frac{2012}{2013}\)
\(\Rightarrow G\le\frac{2012}{2013}\)
Vậy Max G= 2012/2013 tại \(\hept{\begin{cases}x-2=0\\x-2y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\2-2y=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=\frac{1}{2}\end{cases}}}\)
Cho \(x,y,z\in\left[0;2\right]\) . Tìm GTLN của biểu thức
\(P=\frac{1}{8}\left[\left(2-x\right)\left(2-y\right)\left(4-z\right)+\frac{8x}{y+z+2}+\frac{8y}{z+x+2}+\frac{8z}{x+y+2}\right]\)
Lời giải:
Đặt \((x,y,z)=(2a,b,2c)\Rightarrow a,b,c\in\left [ 0;1 \right ]\)
Bằng cách dự đoán điểm rơi, ta sẽ đi chứng minh $P\leq 2$, tức là CM:
\(P=(1-a)(1-b)(2-c)+\frac{a}{b+c+1}+\frac{b}{c+a+1}+\frac{c}{a+b+1}\leq 2\). Thật vậy.
AM-GM cho bộ $1-a,1-b,a+b+1$ dương, ta có:
\(3=1-a+1-b+a+b+1\geq 3\sqrt[3]{(1-a)(1-b)(a+b+1)}\)
\(\Rightarrow (1-a)(1-b)(a+b+1)\leq 1\rightarrow (1-a)(1-b)(2-c)\leq \frac{2-c}{a+b+1}\)
Cần CM: \(\frac{a}{b+c+1}+\frac{b}{a+c+1}+\frac{2}{a+b+1}\leq 2\)\(\Leftrightarrow \frac{a}{b+c+1}+\frac{b}{a+c+1}\leq \frac{2a+2b}{a+b+1}\)
Hiển nhiên đúng vì \(b+c+1,a+c+1>\frac{a+b+1}{2}\forall a,b,c\in [0;1]\)
Vậy \(P_{max}=2\Leftrightarrow a=b=0;c\in [0;1]\)
1) Tìm GTNN của \(B=2\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)-5\left(\frac{x}{y}+\frac{y}{x}\right)\\ \left(x,y>0\right)\)
2) Tìm GTLN và GTNN của \(C=\frac{\left(x^2-y^2\right)\left(1-x^2y^2\right)}{\left(1+x^2\right)^2\left(1+y^2\right)^2}\)
1.Cho \(r\left(x\right)=-\left(3x-7\right)^2+2\left(3x-7\right)-17\)
Tìm GTLN của biểu thức r(x).
2. So sánh : \(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)với \(B=3^{32}-1\)
3. Tìm x, y biết: \(y^2+2y+4x-2^{x+1}+2=0\)
Câu 3 kiểm tra lại đề lại với , nếu đúng thì phức tạp lắm, còn sửa lại đề thì là :
\(y^2+2y+4^x-2^{x+1}+2=0\)
\(=>\left(y^2+2y+1\right)+2^{2x}-2^x.2+1=0\)
\(=>\left(y+1\right)^2+\left(\left(2^x\right)^2-2^x.2.1+1^2\right)=0\)
\(=>\left(y+1\right)^2+\left(2^x-1\right)^2=0\)
Dấu = xảy ra khi :
\(\hept{\begin{cases}y+1=0\\2^x-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=-1\\x=0\end{cases}}}\)
CHÚC BẠN HỌC TỐT...........
1, Khai triển ra ta được:
\(r\left(x\right)=-\left(9x^2-42x+49\right)+6x-14-17\)
\(=-9x^2+42x-49+6x-14-17\)
\(=-9x^2+48x-80\)
\(=-9x^2+48x-64-16\)
\(=-\left(\left(3x\right)^2-3x.2.8+8^2\right)-16\)
\(=-\left(3x+8\right)^2-16\)
\(Do-\left(3x+8\right)^2\le0\)
\(=>-\left(3x+8\right)^2-16\le-16\)
Dấu bằng xảy ra khi \(3x+8=0=>x=-\frac{8}{3}\)
Vậy giá trị nhỏ nhất là -16 tại \(x=-\frac{8}{3}\)
Giúp mình với :
a)Tìm GTNN của A = \(\left|x^2-x+1\right|+\left|x^2-x-2\right|\)
b ) tìm GTNLN của D =\(\frac{x+2}{\left|x\right|}\)với x khác 0 và x thuộc Z
c) tìm GTLN của F=\(\frac{7x-8}{2x-3}\)với x thuộc N
d) Timf GTNN của G=\(x\left(x+1\right)+x+2\)
e) Tìm GTLN của J = \(x^4+2x^2-7\)
f) Tìm GTLN của biểu thức N = \(\left(x+2\right)^2-4x+2\)
G ) tìm GTLN của T= \(4\left(3-\left|x-1\right|\right)+\left|1-x\right|\)
Tìm GTLN-GTNN
a)H=-2-y^2
b)\(\frac{2018}{\left|x\right|+2019}\)
c)F=\(\frac{3}{\left|x\right|-1}\)
a, Ta có : y^2 lớn hơn hoặc bằng 0 với mọi y
=> -y^2 nhỏ hơn hoặc bằng 0 với mọi y
=>-2-y^2 nhỏ hơn hoặc bằng -2 với mọi y
=> H nhỏ hơn hoặc -2 với mọi y
Dấu "=" xảy ra <=>y^2=0 <=>y=0
Vậy GTLN của H là -2 tại y=0