Cho a+b+c=0,tính GTBT:
\(\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}+\frac{1}{a^2+b^2-c^2}\)
Cho 3 số abc thỏa mãn :\(a^3+b^3+c^3=3abc\)a;b;c đôi một khác nhau
Tính GTBT:
\(B=\frac{1}{a^2+b^2+-c^2}+\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}\)
Cho a+b+c=0
Tính GTBT:B=\(\frac{\text{ab}}{\text{a}^2+b^2-c^2}+\frac{bc}{b^2+c^2-\text{a}^2}+\frac{c\text{a}}{c^2+\text{a}^2-b^2}\)
Ta có a+b+c=0
<=> a+b=-c <=>a2+b2-c2=-2ab
b+c=-a <=> b2+c2-a2=-2bc
c+a=-b <=> c2+a2-b2=-2ca
Thay vào biểu thức ta có
\(B=\frac{ab}{-2ab}-\frac{bc}{2bc}-\frac{ca}{2ca}=\frac{-3}{2}\)
tính GTBT
P=\(\frac{1}{ab}\sqrt{\frac{\left(a^2+1\right)\left(b^2+1\right)}{c^2+1}+\frac{1}{bc}\sqrt{\frac{\left(b^2+1\right)\left(c^2+1\right)}{a^2+1}}}+\frac{1}{ac}\sqrt{\frac{\left(a^2+1\right)\left(c^2+1\right)}{b^2+1}}\)
Bài 1.
Cho a+b+c=0. Tính:
\(\frac{1}{a^2+b^2-c^2}+\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}\)
Bài 2.
Cho a-b-c=0. Tính:
\(\frac{1}{a^2+b^2-c^2}+\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}\)
Bài 3. Cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0(a,b,c\ne0)\)
Rút gọn: \(\frac{bc}{a^2+2bc}+\frac{ca}{b^2+2ac}+\frac{ab}{c^2+2ab}\)
Bài 4. Cho \(\left(a+b+c\right)^2=a^2+b^2+c^2\)
Rút gọn:\(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\)
1. a + b + c = 0 \(\Rightarrow\)a + b = -c \(\Rightarrow\)( a + b )2 = ( -c )2 \(\Rightarrow\)a2 + b2 - c2 = -2ab
Tương tự : b2 + c2 - a2 = -2bc ; c2 + a2 - b2 = -2ac
Ta có : \(\frac{1}{a^2+b^2-c^2}+\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}\)
\(=\frac{1}{-2ab}+\frac{1}{-2bc}+\frac{1}{-2ac}=\frac{-1}{2}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)
\(=\frac{-1}{2}\left(\frac{a+b+c}{abc}\right)=0\)
2. tương tự
3,4 . có ở dưới, câu hỏi của Quyết Tâm chiến thắng
1. Cho 3 số a,b,c \(\ne\) 0 và đôi một khác nhau và thỏa mãn a+b+c = 0
Tính GTBT
Q = (\(\frac{a}{b-c}\)+\(\frac{b}{c-a}\)+\(\frac{c}{a-b}\))(\(\frac{b-c}{a}\)+\(\frac{c-a}{b}\)+\(\frac{a-b}{c}\))
2.Cho các số dương a,b,c, thỏa mãn a+b+c =\(\frac{3}{2}\)
Chứng Minh Rằng : \(\frac{1+b}{1+4a^2}\)+\(\frac{1+c}{1+4b^2}\)+\(\frac{1+a}{1+4c^2}\)\(\ge\)\(\frac{9}{4}\)
Cho a+b+c=0
Tính GTBT:\(B=\frac{\text{a}b}{\text{a}^2+b^2-c^2}+\frac{bc}{b^2+c^2-\text{a}^2}+\frac{c\text{a}}{c^2+\text{a}^2-b^2}\)
\(B=\Sigma\frac{ab}{a^2+b^2-c^2}\)
\(B=\frac{ab}{a^2+\left(b-c\right)\left(b+c\right)}+\frac{bc}{b^2+\left(c-a\right)\left(c+a\right)}+\frac{ac}{c^2+\left(a-b\right)\left(a+b\right)}\)
\(B=\frac{ab}{a^2-a\left(b-c\right)}+\frac{bc}{b^2-b\left(c-a\right)}+\frac{ac}{c^2-c\left(a-b\right)}\)
\(B=\frac{ab}{a\left(a-b+c\right)}+\frac{bc}{b\left(b-c+a\right)}+\frac{ac}{c\left(c-a+b\right)}\)
\(B=\frac{b}{a+b+c-2b}+\frac{c}{a+b+c-2c}+\frac{a}{a+b+c-2a}\)
\(B=\frac{-b}{2b}+\frac{-c}{2c}+\frac{-a}{2a}\)
\(B=\frac{-1}{2}+\frac{-1}{2}+\frac{-1}{2}\)
\(B=\frac{-3}{2}\)
Cho a, b, c khác 0 thỏa mãn : a + b - c = 0. Tính :
\(B=\frac{1}{a^2+b^2-c^2}+\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}\)
\(a+b=c\Rightarrow\left(a+b\right)^2=c^2\Rightarrow a^2+2ab+b^2=c^2\Rightarrow a^2+b^2-c^2=-2ab\)
Tượng tự: \(b^2+c^2-a^2=2bc,c^2+a^2-b^2=2ac\)
Khi đó: \(B=\frac{-1}{2ab}+\frac{1}{2bc}+\frac{1}{2ac}=\frac{-c+a+b}{2abc}=0\)
Chúc bạn học tốt.
cho a;b;c khác 0 t/m a+b+c=0 tính:
P=\(\frac{1}{a^2+b^2-c^2}+\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}\)
a+b+c=0 =>a+b=-c =>(a+b)2=(-c)2=>a2+b2+2ab=c2=>a2+b2-c2=-2ab
tương tự , b2+c2-a2=-2bc ; c2+a2-b2=-2ca
Thay vào P=1/-2ab + 1/-2bc + 1/-2ca = 0
Cho a + b + c + d = 0.
a) Tính \(M=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
b) Tính \(N=\frac{1}{b^2+c^2-a^2}+\frac{1}{a^2+c^2-b^2}+\frac{1}{a^2+b^2-c^2}\)
đề ko có d nha bạn :
=> sửa lại : cho a+b+c =0 . CM: ...........
===========================================================
a , Ta có : \(a+b+c=0\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)
=> M = \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
\(=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{\left(-c\right)\left(-a\right)\left(-b\right)}{abc}=-1\)
\(a+b+c=0\) nha
a có bạn làm rồi mình làm ý b thôi nak
\(a+b+c=0\Rightarrow\hept{\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}}\)
\(N=\frac{1}{b^2+c^2-a^2}+\frac{1}{a^2+c^2-b^2}+\frac{1}{a^2+b^2-c^2}\)
\(=\frac{1}{\left(b^2+2bc+c^2\right)-a^2-2bc}+\frac{1}{\left(a^2+2ac+c^2\right)-b^2-2ac}+\frac{1}{\left(a^2+2ab+b^2\right)-c^2-2ab}\)
\(\frac{1}{\left(b+c\right)^2-a^2-2bc}+\frac{1}{\left(a+c\right)^2-b^2-2ac}+\frac{1}{\left(a+b\right)^2-c^2-2ab}\)
\(=\frac{1}{-2bc}+\frac{1}{-2ab}+\frac{1}{-2ab}\)
\(=\frac{a+b+c}{-2abc}=0\)