Câu hỏi của Hattory Heiji - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo link trên!
Câu hỏi của Hattory Heiji - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo link trên!
Cho 3 số abc thỏa mãn :\(a^3+b^3+c^3=3abc\)a;b;c đôi một khác nhau
Tính GTBT:
\(B=\frac{1}{a^2+b^2+-c^2}+\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}\)
Cho a+b+c=0
Tính GTBT:B=\(\frac{\text{ab}}{\text{a}^2+b^2-c^2}+\frac{bc}{b^2+c^2-\text{a}^2}+\frac{c\text{a}}{c^2+\text{a}^2-b^2}\)
Bài 1.
Cho a+b+c=0. Tính:
\(\frac{1}{a^2+b^2-c^2}+\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}\)
Bài 2.
Cho a-b-c=0. Tính:
\(\frac{1}{a^2+b^2-c^2}+\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}\)
Bài 3. Cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0(a,b,c\ne0)\)
Rút gọn: \(\frac{bc}{a^2+2bc}+\frac{ca}{b^2+2ac}+\frac{ab}{c^2+2ab}\)
Bài 4. Cho \(\left(a+b+c\right)^2=a^2+b^2+c^2\)
Rút gọn:\(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\)
1. Cho 3 số a,b,c \(\ne\) 0 và đôi một khác nhau và thỏa mãn a+b+c = 0
Tính GTBT
Q = (\(\frac{a}{b-c}\)+\(\frac{b}{c-a}\)+\(\frac{c}{a-b}\))(\(\frac{b-c}{a}\)+\(\frac{c-a}{b}\)+\(\frac{a-b}{c}\))
2.Cho các số dương a,b,c, thỏa mãn a+b+c =\(\frac{3}{2}\)
Chứng Minh Rằng : \(\frac{1+b}{1+4a^2}\)+\(\frac{1+c}{1+4b^2}\)+\(\frac{1+a}{1+4c^2}\)\(\ge\)\(\frac{9}{4}\)
Cho a, b, c khác 0 thỏa mãn : a + b - c = 0. Tính :
\(B=\frac{1}{a^2+b^2-c^2}+\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}\)
cho a;b;c khác 0 t/m a+b+c=0 tính:
P=\(\frac{1}{a^2+b^2-c^2}+\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}\)
Cho a + b + c + d = 0.
a) Tính \(M=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
b) Tính \(N=\frac{1}{b^2+c^2-a^2}+\frac{1}{a^2+c^2-b^2}+\frac{1}{a^2+b^2-c^2}\)
Cho a,b,c thỏa mãn a+b+c=0
Tính\(G=\frac{1}{b^2+c^2-a^2}+\frac{1}{c^2+a^2-b^2}+\frac{1}{a^2+b^2-c^2}\)
\(D=\left(\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\right)\left(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\right)\)
cho a,b,c khác 0 và a+b+c=0
tính Q=\(\frac{1}{a^2+b^2-c^2}+\frac{1}{b^2+c^2-a^2}+\frac{1}{a^2+c^2-b^2}\)