Bài 8. Gọi O là điểm nằm trong hình bình hành ABCD. Chứng minh \(S_{AOB}+S_{COD}=S_{BCO}+S_{DAO}\)
Cho hình bình hành ABCD. Gọi O là giao điểm 2 đường chéo. Chứng minh rằng:
a) \(S_{OAB}=S_{OBC}=S_{ODC}=S_{ODA}\)
b) \(S_{ABD}=S_{BDC}\)
c)\(S_{ABC}=S_{ACD}\)
a) + b) + c)
Vì chứng minh được câu a) thì khỏi cần chứng minh câu b) và c)
\(S_{ABD}=S_{BDC}\)
- Đáy AB = DC
- Có chiều cao bằng chiều cao của hình bình hành ( AH = BK)
\(S_{ADC}=S_{ABC}\)
- Đáy AB = DC
- Có chiều cao bằng chiều cao hình bình hành
Vì vậy có thể kết luận rằng :\(S_{ABD}=S_{BDC}=S_{ABC}=S_{ACD}\)
\(S_{ABD}=S_{OAB}+S_{AOD}\)
\(S_{ADC}=S_{AOD}+S_{DOC}\)
Vì có chung diện tích AOD nên S OAB = S DOC
Tương tự...
Bài 1: Cho tứ giác ABCD. Trên AB, CD lần lượt lấy M, N, P, Q sao cho AM= MN= NB, CP= PQ= QD. Chứng minh rằng \(S_{MNPQ}=\frac{1}{3}S_{ABCD}.\)
Bài 2: Cho tam giác ABC. Trên một nửa mặt phẳng bờ BC chứa A, dựng các hình bình hành BCEF, ACKL, ABMN sao cho E, F lần lượt nằm trên KL, MN. Chứng minh rằng \(S_{BCEF}=S_{ACKL}+S_{ABMN}.\)
Bài 3: Cho tứ giác ABCD. P là điểm bất kì nằm trong tứ giác ABCD sao cho \(S_{APB}+S_{CPD}=\frac{1}{2}S_{ABCD}.\)Gọi M,N lần lượt là trung điểm AC, BD. Chứng minh rằng P, M, N thẳng hàng.
Giúp mình với! Mình cần gấp.
Bai 1
Bo de : \(\Delta ABC\) trung tuyen AD
\(\Rightarrow S_{ADB}=S_{ADC}\)
cai nay ban tu chung minh nha
Ap dung bo de va bai nay => \(S_{MNPQ}=S_{MQP}+S_{MNP}=\frac{1}{3}S_{MDC}+\frac{1}{3}S_{ABP}\)
ta phai chung minh \(S_{MDC}+S_{ABP}=S_{ABCD}\)
That vay co \(S_{AMP}=S_{AMD},S_{MBP}=S_{MBC}\)
=> \(S_{ABP}+S_{MDC}=S_{ADM}+S_{MDC}+S_{MBC}=S_{ABCD}\)
=> dpcm
Hình như sai ở dòng thứ 2 từ dưới lên trên ấy
dung toi do ban chac ban ve hinh khac mik nen chac nhin khong giong thoi chu mik kiem tra lai roi do
Cho hình bình hành ABCD, O là điểm nằm trong hình bình hành đó. Cm:
\(S_{ABO}+S_{CDO}=S_{BCO}+S_{DAO}\)
Cho hình thang ABCD (AB//CD), 2 đường chéo cắt nhau tại O.
a, Chứng minh \(S_{AOD}=S_{BOC}\)
b, Cho biết : \(S_{AOB}=9,S_{COD}=25.\)Tính \(S_{ABCD}\)
Chọ Ở là một điểm nằm trong hình bình hành ABCD. Chứng minh \(S_{AOB}+S_{COB}=S_{AOD}+S_{DOC}\)
Cho Hình Thang ABCD (AB//CD),AC cắt BD tại O
a,chứng minh : \(S_{\Delta ABC}=S_{\Delta BCD}\)
b,Chứng minh \(S_{\Delta AOD}=S_{\Delta BIC}\)
c,Cho \(S_{\Delta AOB}=4cm^2,S_{\Delta COD}=9cm^2\)Tính \(S_{ABCD}\)
Cho tứ giác ABCD, \(AC\cap BD=\left\{O\right\}\) \(S_{AOB}=S,S_{COD}=S_1,S_{ABCD}=S\)
Chứng minh \(\sqrt{S}\ge\sqrt{S_1}+\sqrt{S_2}\)
Bài 3: Cho tứ giác ABCD. P là điểm bất kì nằm trong tứ giác ABCD sao cho \(S_{APB}+S_{CPD}=\frac{1}{2}S_{ABCD}\).Gọi M, N lần lượt là trung điểm AC, BD. Chứng minh rằng P, M, N thẳng hàng.
2) Cho hình thang ABCD (AB//CD) giao điểm hai đường chéo là O. Đường thẳng O//AB cắt AD và BC lần lượt tại M,N.
a) C/m \(\dfrac{MO}{CD}+\dfrac{MO}{AB}=1\)
b) C/m \(\dfrac{1}{AB}+\dfrac{1}{CD}=\dfrac{2}{MN}\)
c) Biết \(S_{AOB}=m^2,S_{COD}=n^2\).Tính \(S_{ABCD}\) theo m và n (với \(S_{AOB},S_{COD},S_{ABCD}\)lần lượt là diện tích tam giác AOB, diện tích tam giác COD, diện tích tam giác ABCD)