bài 1
A= 1/x-2 + (x^2 - x -2)/(x^2 -7x + 10) - (2x - 4)/(x - 5)
bài 1:
a)7x(x2-7x+3) b)(x+6)(x-7)
c)(x-8)2 d) (3x+2)2
e)(x-4)(x+4)-(5-x)2
Bài 2:
a)2(x-7)-9=10 b)(2x-5)2-x(4x-3)=2x+50
\(1,\\ a,=7x^3-49x^2+21x\\ b,=x^2-x-42\\ c,=x^2-16x+64\\ d,=9x^2+12x+4\\ e,=x^2-16-25+10x-x^2=10x-41\\ 2,\\ a,\Rightarrow2\left(x-7\right)=19\\ \Rightarrow x-7=\dfrac{19}{2}\Rightarrow x=\dfrac{33}{2}\\ b,\Rightarrow4x^2-20x+25-4x^2+3x-2x=50\\ \Rightarrow-19x=25\Rightarrow x=-\dfrac{25}{19}\)
bài 1
a) \(\sqrt{2X+1}\)
b)\(\sqrt{x^2-4}\)
c) \(\dfrac{3}{\sqrt{3X+5}}\)
d) \(\sqrt{X-3}-\sqrt{10-x}\)
e) \(\sqrt{x+4}+\dfrac{2-X}{x^2-16}\)
a) ĐKXĐ: \(x\ge-\dfrac{1}{2}\)
b) ĐKXĐ: \(\left[{}\begin{matrix}x\ge2\\x\le-2\end{matrix}\right.\)
c) ĐKXĐ: \(x>-\dfrac{5}{3}\)
d) ĐKXĐ: \(3\le x\le10\)
e) ĐKXĐ: \(\left\{{}\begin{matrix}x>-4\\x\ne4\end{matrix}\right.\)
Bài 2: Giải các phương trình sau:
a. (3x + 2)(x2 – 1) = (9x2 – 4)(x + 1)
b. x(x + 3)(x – 3) – 5(x + 2)(x2 – 2x + 4) = 0
c. x(x + 3)(x – 3) + 5(x – 3) = 0
d. (3x – 1)(x2 + 2) = (3x – 1)(7x – 10)
\(a.\left(3x+2\right)\left(x^2-1\right)=\left(9x^2-4\right)\left(x+1\right)\)
\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left(x-1\right)=\left(3x-2\right)\left(3x+2\right)\left(x+1\right)\)
\(\Leftrightarrow x-1=3x-2\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
c: =>x-3=0
hay x=3
d: \(\Leftrightarrow\left(3x-1\right)\cdot\left(x^2+2-7x+10\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x-3\right)\left(x-4\right)=0\)
hay \(x\in\left\{\dfrac{1}{3};3;4\right\}\)
Bài 2: Giải các phương trình sau:
a. (3x + 2)(x2 – 1) = (9x2 – 4)(x + 1)
b. x(x + 3)(x – 3) – 5(x + 2)(x2 – 2x + 4) = 0
c. x(x + 3)(x – 3) + 5(x – 3) = 0
d. (3x – 1)(x2 + 2) = (3x – 1)(7x – 10)
\(\left(3x+2\right)\left(x^2-1\right)=\left(9x^2-4\right)\left(x+1\right).\)
\(\Leftrightarrow\left(3x+2\right)\left(x-1\right)\left(x+1\right)-\left(3x-2\right)\left(3x+2\right)\left(x+1\right)=0.\)
\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left(x-1-3x+2\right)=0.\)
\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left(-2x+1\right)=0.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+2=0.\\x+1=0.\\-2x+1=0.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}.\\x=-1.\\x=\dfrac{1}{2}.\end{matrix}\right.\)
c: =>(x-3)(x2+3x+5)=0
=>x-3=0
hay x=3
d: =>(3x-1)(x2+2-7x+10)=0
=>(3x-1)(x-3)(x-4)=0
hay \(x\in\left\{\dfrac{1}{3};3;4\right\}\)
Bài 1: (2đ). Thực hiện phép tính: a) 3x(x² + 2x - 1) b) (2x² +5x+2) : (x+2) 6 3 c) x² + 4x + 2x+8 Bài 2: (2đ). a) Tim x, biết: x(x – 2)+x−2 =0 a) x²-25-(x + 5) = 0 a) 2x²(3x² - 7x +2) b) (2x²-7x+3): (2x - 1) r 4-4x c) + x-2 x-2 x +1 -2x + c) 2x-2x² b) Tính giá trị của biểu thức: xẻ + 2x + l − y, tại x = 94,5 và y=4,5 b) Tính giá trị của biểu thức: (X + 1) − y”, tại x =94,5 và y=4,5 c) Tính giá trị biểu thức: Q = xẻ − 10x + 25 tại x = 1005 Bài 3: (2đ) Rút gọn phân thức a) A = x² +6x+9 b) 4x+10 2x²+5x B = c) C= x²-xy Sy²-5xy Bài 5: (2,5 đ) Cho AABC, đường trung tuyển AM. Gọi D là trung điểm của AB, E là điểm dối xứng với M qua D. a) Tử giác AEBM là hình gì? Vì sao? b) Biết AC = 12cm, tính độ dải đoạn MD?
Bài 2:
a: \(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
c)3x^2-7x-10=0
d)2x(x-10)-x+10=0
e)3x^3+7x^2+17x+5=0
f)(2x-1)^2-(x-3)^2=0
g)x^3-5x^2+8x=4
c, \(3x^2-7x+10=0\)
\(\Leftrightarrow3x^2+3x-10x+10=0\)
\(\Leftrightarrow3x\left(x+1\right)-10\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x-10\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{10}{3}\end{matrix}\right.\)
d, \(2x\left(x-10\right)-x+10=0\)
\(\Leftrightarrow2x\left(x-10\right)-\left(x-10\right)=0\)
\(\Leftrightarrow\left(x-10\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=10\\x=\dfrac{1}{2}\end{matrix}\right.\)
Giải chi tiết hộ mik với ạ
a, [(x-2)(x+10)]/3-[(x+4)(x+10)]/12=[(x-2)(x+4)] b, (x+2)2/8-2(2x+1)=25+(x-2)2/3 c, (7x2-14x-5)/15=(2x+1)2/5-(x-1)2/3. d, [(7x+1)(x-2)]/10+2/5=(x-2)2/5+[(x-1)(x-3)]/2
bài 1 :1)2/x-1 + 2x+3/x^2+x+1=(2x+1)(2x-1)/x^3-1
2)x^3-(x+1)^3/(4x+3)(x-5)=7x-1/4x+3 - x/x-5 (x=-1/9)
3)12/1-9x^2=1-3x/1+3x - 1+3x/1-3x (x=-1)
4)x+5/x-1=x+1/x-3 - 8/x^2-4x+3
5)1/x-1 + 2x/x+3=-1 (x=0,-1/3)
6)1/3y^2-10y+3=6y/9y^2-1 + 2/1-3y (y=1)
7)24/x^2-2x+4=3x/x+2 + 72/x^3+8 (x=2)
8)1/x^2+9x+20 +1/x^2+11x+30 +1/x^2+13x+42=1/18 (-13,2)
9)x+4/2x^2-5x+2 + x+1/2x^2-7x+3=2x+5/2x^2-7x+3 (x=4)
10)12x/x-4 - 3x^2/x+4=384/x^2-16
bài 2:
tìm giá trị lớn nhất và nhỏ nhất của các đa thức sau
A=x^2+4x+5 B=-x^2-2x+2 C= x^2+2x+3 D=-x^2+4x+2000
E=10x-4x^2-23 F=1/x^2-2x+3 G=3x^2+3x+5/x^2+x+1 H=x^2+x+1/x^2-x+1
O=5x^2+8xy+5y^2 P=42-x/x-15
bài 3: so sánh A và B biết : A=2003.2005 và 2004^2
4) |3 - 2x| = x + 2
5) |2x - 1| = 5 - x
6) |- 3x| = x - 2
7) |2 - 3x| = 2x + 1
8) |2x - 1| + |4x ^ 2 - 1| = 0
9) (2x + 5)/(x + 3) + 1 = 4/(x ^ 2 + 2x - 3) - (3x - 1)/(1 - x)
10) (x - 1)/(x + 3) - x/(x - 3) = (7x - 3)/(9 - x ^ 2)
11) 5 + 96/(x ^ 2 - 16) = (2x - 1)/(x + 4) + (3x - 1)/(x - 4)
12) (2x)/(2x - 1) + x/(2x + 1) = 1 + 4/((2x - 1)(2x + 1))
13) (x + 2)/(x - 2) - 1/x = 2/(x ^ 2 - 2x)
14) x/(2x - 6) + x/(2x + 2) = (2x + 4)/(x ^ 2 - 2x - 3)
14) Ta có: \(\dfrac{x}{2x-6}+\dfrac{x}{2x+2}=\dfrac{2x+4}{x^2-2x-3}\)
\(\Leftrightarrow\dfrac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\dfrac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\dfrac{4x+8}{2\left(x-3\right)\left(x+1\right)}\)
Suy ra: \(x^2+x+x^2-3x-4x-8=0\)
\(\Leftrightarrow2x^2-6x-8=0\)
\(\Leftrightarrow x^2-3x-4=0\)
a=1; b=-3; c=-4
Vì a-b+c=0 nên phương trình có hai nghiệm phân biệt là:
\(x_1=-1\left(loại\right);x_2=\dfrac{-c}{a}=4\left(nhận\right)\)