Cho \(A=200\left(9^{2013}+9^{2012}+...+9^2+9+1\right)\)
CMR: A+25 là số chính phương
Cho A= 200.( 9^2013 + 9^2012 + 9^2011+..........+9^2+9+1)
CMR A+25 là số chính phương
Cho A = 200.(92013 + 92012+...+ 92 + 9 + 1)
CMR A + 25 là số chính phương
Cho A= 200.[9^2013+9^2012+.......+9^2+9+1]
Chứng minh rằng A+25 là số chính phương
cho A= 200.[9^2013+9^2012+.......+9+1]
Chứng minh Rằng A+25 là số chính phương
ta có: 9A = 200.(92014+92013+...+92+9+1)
A = 200.(92013+92012+...+93+92+9)
=> 8A = 200.(92014-1) => A = 25(92014-1) => A + 25 = 25.92014 = (5.32014)2 => A + 25 là scp
Cho A - \(200.\left(9^{2013}+9^{2012}+...+9^2+9+1\right)\)
Chứng minh rằng A+ 25 là số chính phương
Ta có:
a0 + a1 + a2 + ... + an = \(\dfrac{a^{n+1}-a^0}{a-1}\)
\(\Rightarrow A=200\cdot\dfrac{9^{2014}-1}{8}=25\cdot\left(9^{2014}-1\right)\)
=> A + 25 = 25.92014 = 52.(91007)2 = (5.91007)2 là số chính phương
cho \(A=200\left(9^{2013}+9^{2012}+9^{2011}+...+9^2+9+1\right)\)
CMR A+25 LÀ SCP
LÀM NHANH TK NHANH,THKS TRC
đặt B=1+9+92+...+92013
9B=9+92+93+...+92014
-B=1+9+92+...+92013
8B=92014-1 =>B=(92014-1)/8
khi đó A+25=200.(92014-1)/8+25=(92014-1)25+25=52.(31007)2-25+25=(5.31007)2 =>A+25 LÀ SỐ CHÍNH PHƯƠNG
HOK TỐT NHÉ
\(9^{2014}=\left(3^{1007}\right)^4\) chứ có phải \(=\left(3^{1007}\right)^2\)đâu bạn
cho biểu thức B=\(\left(9^{2013}+9^{2012}+9^{2011}+...+9+1\right)\times200\)
CMR:B+25 là số chính phương
Ta có: \(B=\left(9^{2013}+9^{2012}+9^{2011}+...+9+1\right)\times200\)
\(\Rightarrow9B=9\times\left(9^{2013}+9^{2012}+9^{2011}+...+9+1\right)\times200\)
\(\Rightarrow9B=\left(9^{2014}+9^{2013}+9^{2012}+...+9^2+9\right)\times200\)
\(\Rightarrow9B-B=\left(9^{2014}+9^{2013}+9^{2012}+...+9^2+9\right)\times200-\left(9^{2013}+9^{2012}+9^{2011}+...+9+1\right)\times200\)
\(\Rightarrow8B=\left\{\left(9^{2014}+9^{2013}+9^{2012}+...+9^2+9\right)-\left(9^{2013}+9^{2012}+9^{2011}+...+9+1\right)\right\}\times200\)
\(\Rightarrow8B=\left\{9^{2014}-1\right\}\times200\)
\(\Rightarrow8B=9^{2014}\times200-1\times200\)
\(\Rightarrow8B=9^{2014}\times200-200\)
\(\Rightarrow B=\frac{9^{2014}\times200-200}{8}\)
\(\Rightarrow B=\frac{9^{2014}\times200}{8}-\frac{200}{8}\)
\(\Rightarrow B=9^{2014}\times25-25\)
\(\Rightarrow B+25=9^{2014}\times25-25+25\)
\(\Rightarrow B+25=9^{2014}\times25\)
\(\Rightarrow B+25=9^{1007\times2}\times5^2\)
\(\Rightarrow B+25=\left(9^{1007}\right)^2\times5^2\)
\(\Rightarrow B+25=\left(9^{1007}\times5\right)^2\)
\(\Rightarrow B+25\) là số chính phương.
Vậy \(B+25\) là số chính phương (đpcm).
Đặt \(A= 9^{2013}+9^{2012}+9^{2011}+...+9+1\)
\(\Longrightarrow 9A = 9^{2014} + 9^{2013} + 9^{2012} + 9^2 + 9\)
\(\Longrightarrow 8A = 9A - A = (9^{2014} + 9^{2013} + 9^{2012} + 9^2 + 9) - (9^{2013}+9^{2012}+9^{2011}+...+9+1) = 9^{2014} - 1\)
\(\Longrightarrow B= 200A = 25(9^{2014} - 1) = 25.9^{2014} - 25\)
\(\Longrightarrow B + 25 = 25.9^{2014} = (5.9^{1007})^2\)
\(\Longrightarrow B\) là số chính phương
Ngắn gọn nhé :)
a) Tìm x là số chính phương sao cho :
\(\frac{a}{9}-\frac{a}{25}< \frac{a}{x}< \frac{a}{9}+\frac{a}{25}\left(a>0\right)\)
b) Cho A = 20092009.....2009 (9999 số 2009)
Hỏi A chia cho 9999 dư bao nhiêu?
(Thực ra cái dấu < a/9 + a/25 là dấu ko quá a/9 + 1/25 nhé)
Bài 1 :Thực hiện phép tính
a) N=1-5-9+13+17-21-25+......+2001-2005-2009+2013
b)So sánh P và Q
Biết P=\(\frac{2010}{2011}\)+\(\frac{2011}{2012}\)+\(\frac{2012}{2013}\)và Q=\(\frac{2010+2011+2012}{2011+2012+2013}\)
Bài 2:
TÍnh: N=\(\frac{5.\left(2^2.3^2\right)^9.\left(2^2\right)^6-2.\left(2^2.3\right)^{14}.3^6}{5.2^{28}.3^{19}-7.2^{29}.3^{18}}\)
Bài 3
Cho a,b là các số nguyên thỏa mãn(\(^{a^2+b^2}\))chia hết cho 3.Chứng minh rằng a và b chia hết cho 3
Bài 1:
a. https://olm.vn/hoi-dap/detail/100987610050.html
b. Giống nhau hoàn toàn => P=Q
Chỉ biết thế thôi
a,1−5−9+13+17−21−25+29+......+2001−2005−2009+2013=(1−5)−(9−13)+(17−21)−(25−29)+.....+(2001−2005)−(2009−2013)=−4+4−4+4−......−4+4=0mik biết làm z thoy