\(\left(-2\right)^3+2^2+\left(-1\right)^{20}+\left(-2\right)^0\)
a,\(3-\left(\frac{-6}{7}\right)^0+\left(\frac{1}{2}\right)^2:2\)
b,\(\left(-2\right)^3+2^2+\left(-1\right)^{20}+\left(-2\right)^0\)
c,\(\left(\left(3\right)^2\right)^2-\left(\left(-5\right)^2\right)^2-\left(\left(-2\right)^3\right)^2\)
d,\(2^4+8[\left(-2\right)^2:\frac{1}{2}]^0-2^{-2}.4+\left(-2\right)^2\)
e, \(2^3+3\left(\frac{1}{2}\right)^0-2^{-2}.4+[\left(-2\right)^2:\frac{1}{2}].8\)
a) 3 - (-6/7)0 + (1/2)2 : 2
= 3 + 1 + 1/4 : 2
= 3 + 1 + 1/8
= 33/8
b) (-2)3 + 22 + (-1)20 + (-2)0
= (-8) + 4 - 1 - 1
= -6
c) [(3)2]2 - [(-5)2]2 - [(-2)3]2
= 81 - 625 - 64
= -608
d) 24 + 8.[(-2)2 : 1/2]0 - 2-2.4 + (-2)2
= 16 + 8.1 - 1/4.4 + 4
= 16 + 8 - 4 + 4
= 27
e) 23 + 3.(1/2)0 - 2-2.4 + [(-2)2 : 1/2].8
= 8 + 3 - 1/4.4 + 8.8
= 8 + 3 - 1 + 64
= 74
Giải PT:
1)\(\left(x^2+4x+2\right)\cdot\left(1-\frac{1}{x}\right)+\frac{36x^2}{\left(x-2\right)^2}=0\)
2)\(\left(x^2-x+1\right)^3-6\left(x+1\right)^3=\left(x^3+1\right)\left(6x^2-17x-5\right)\)
3)\(\left(x^3+4x-4\right)^3+4x^3+15x-20=0\)
Tìm x
1) \(3\left(x-1\right)^2-3x\left(x-5\right)=1\)
2) \(\left(6x-2\right)^2+\left(5x-2\right)^2-4\left(3x-1\right)\left(5x-2\right)=0\)
3) \(\left(2x-5\right)\left(2x+5\right)-1=0\)
4) \(5x^2-20=0\)
Giusp mk vs
1) 3(x - 1)2 - 3x(x - 5) = 1
⇒ 3(x2 - 2x + 1) - 3x2 + 15x = 1
⇒ 3x2 - 6x + 3 - 3x2 + 15x = 1
⇒ 9x = 1 - 3
⇒ 9x = -2
⇒ x = \(\dfrac{-2}{9}\)
(5x - 2) + (5x - 2)2 -2(6x - 2)(5x - 2) = 0
⇒ (6x - 2)(6x - 2 - 5x +2) + (5x - 2)(5x - 2 - 6x + 2) = 0
⇒ x(6x - 2) - x(5x - 2) = 0
⇒ x(6x - 2 - 5x +2) = 0
⇒ xx = 0
⇒ x = 0
Còn mấy cái sau mình trả lời sau nha
chứng minh cho biểu thức
\(\frac{\left(1^6-29^3\right)\left(2^6-28^3\right)\left(3^6-27^3\right).....\left(10^6-20^3\right)}{\left(1^6+29^3\right)\left(2^6+28^3\right)\left(3^6+27^3\right).....\left(10^6+20^3\right)}=0\)\(0\)
\(5^6-25^3=\left(5^2\right)^3-25^3=25^3-25^3=0\)
\(\Rightarrow\frac{\left(1^6-29^3\right)\left(2^6-28^3\right)\left(3^6-27^3\right)\left(4^6-26^3\right)\left(5^6-25^3\right).....\left(10^6-20^3\right)}{\left(1^6+29^3\right)\left(2^6+28^3\right)\left(3^6+27^3\right)\left(4^6+26^3\right)\left(5^6+25^3\right).....\left(10^6+20^3\right)}=0\)
Tìm \(x\):
\(8\)) \(1-\left(x-6\right)=4\left(2-2x\right)\)
\(9\))\(\left(3x-2\right)\left(x+5\right)=0\)
\(10\))\(\left(x+3\right)\left(x^2+2\right)=0\)
\(11\))\(\left(5x-1\right)\left(x^2-9\right)=0\)
\(12\))\(x\left(x-3\right)+3\left(x-3\right)=0\)
\(13\))\(x\left(x-5\right)-4x+20=0\)
\(14\))\(x^2+4x-5=0\)
\(8,1-\left(x-6\right)=4\left(2-2x\right)\)
\(\Leftrightarrow1-x+6=8-8x\)
\(\Leftrightarrow-x+8x=8-1-6\)
\(\Leftrightarrow7x=1\)
\(\Leftrightarrow x=\dfrac{1}{7}\)
\(9,\left(3x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-2=0\\x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-5\end{matrix}\right.\)
\(10,\left(x+3\right)\left(x^2+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\varnothing\end{matrix}\right.\)
`8)1-(x-5)=4(2-2x)`
`<=>1-x+5=8-6x`
`<=>5x=2<=>x=2/5`
`9)(3x-2)(x+5)=0`
`<=>[(x=2/3),(x=-5):}`
`10)(x+3)(x^2+2)=0`
Mà `x^2+2 > 0 AA x`
`=>x+3=0`
`<=>x=-3`
`11)(5x-1)(x^2-9)=0`
`<=>(5x-1)(x-3)(x+3)=0`
`<=>[(x=1/5),(x=3),(x=-3):}`
`12)x(x-3)+3(x-3)=0`
`<=>(x-3)(x+3)=0`
`<=>[(x=3),(x=-3):}`
`13)x(x-5)-4x+20=0`
`<=>x(x-5)-4(x-5)=0`
`<=>(x-5)(x-4)=0`
`<=>[(x=5),(x=4):}`
`14)x^2+4x-5=0`
`<=>x^2+5x-x-5=0`
`<=>(x+5)(x-1)=0`
`<=>[(x=-5),(x=1):}`
\(11,=>\left[{}\begin{matrix}5x-1=0\\x^2-9=0\end{matrix}\right.=>\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=3\\x=-3\end{matrix}\right.\\ 12,=>\left(x+3\right)\left(x-3\right)=0\\ =>\left[{}\begin{matrix}x+3=0\\x-3=0\end{matrix}\right.=>\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\\ 13,=>x\left(x-5\right)-4\left(x-5\right)=0\\ =>\left(x-4\right)\left(x-5\right)=0\\ =>\left[{}\begin{matrix}x-4=0\\x-5=0\end{matrix}\right.=>\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)
\(14,=>x^2+5x-x-5=0\\ =>x\left(x+5\right)-\left(x+5\right)=0\\ =>\left(x-1\right)\left(x+5\right)=0\\ =>\left[{}\begin{matrix}x-1=0\\x+5=0\end{matrix}\right.=>\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)
R = \(\left\{2015-2016^0.\left[2^3.5-\left(-1\right)^{2016}.\frac{1}{2^{19}}.\left(2.5^2-2^4.3\right)^{20}\right]\right\}-10^3\)
i, \(\left(x-1\right)\left(x+3\right)-\left(x-1\right)\left(2x+1\right)=0\)
k, \(\left(x+2\right)\left(x+1\right)-\left(x-3\right)\left(x+2\right)=0\)
l, \(\left(x-2\right)\left(x+3\right)=\left(x-2\right)\left(2x+5\right)\)
\(\left(x-1\right)\left(-x+2\right)=0\Leftrightarrow x=1;x=2\)
\(\left(x+2\right)\left(x+1-x+3\right)=0\Leftrightarrow x=-2\)
\(\left(x-2\right)\left(x+3\right)-\left(x-2\right)\left(2x+5\right)=0\Leftrightarrow\left(x-2\right)\left(-x-2\right)=0\Leftrightarrow x=-2;x=2\)
\(i,\left(x-1\right)\left(x+3\right)-\left(x-1\right)\left(2x+1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x+3-2x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(-x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\\ k,\left(x+2\right)\left(x+1\right)-\left(x-3\right)\left(x+2\right)=0\\ \Leftrightarrow\left(x+2\right)\left(x+1-x+3\right)=0\\ \Leftrightarrow4\left(x+2\right)=0\\ \Leftrightarrow x+2=0\\ \Leftrightarrow x=-2\\ l,\left(x-2\right)\left(x+3\right)=\left(x-2\right)\left(2x+5\right)\\ \Leftrightarrow\left(x-2\right)\left(2x+5\right)-\left(x-2\right)\left(x+3\right)=0\\ \Leftrightarrow\left(x-2\right)\left(2x+5-x-3\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Tìm a,b,c biết
a, \(\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^2< =0\)
b,\(\left(a-7\right)^2+\left(3b+2\right)^2+\left(4c-5\right)^6< =0\)
c,\(\left(12a-9\right)^2+\left(8b+1\right)^4+\left(c+19\right)^6< =0\)
d,\(\left(7b-3\right)^4+\left(21a-6\right)^4+\left(18c+5\right)^6< =0\)
a, Ta thấy : \(\left\{{}\begin{matrix}\left(2a+1\right)^2\ge0\\\left(b+3\right)^2\ge0\\\left(5c-6\right)^2\ge0\end{matrix}\right.\)\(\forall a,b,c\in R\)
\(\Rightarrow\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2\ge0\forall a,b,c\in R\)
Mà \(\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2\le0\)
Nên trường hợp chỉ xảy ra là : \(\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2=0\)
- Dấu " = " xảy ra \(\left\{{}\begin{matrix}2a+1=0\\b+3=0\\5c-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{2}\\b=-3\\c=\dfrac{6}{5}\end{matrix}\right.\)
Vậy ...
b,c,d tương tự câu a nha chỉ cần thay số vào là ra ;-;
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{n+1}\right)\left(n\in N\right)\)
\(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+.......+\frac{1}{20}\left(1+2+3+4....+20\right)\)
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{n+1}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{n}{n+1}\)
\(=\frac{1}{n+1}\)
\(1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)...+\frac{1}{20}.\left(1+2+3+...+20\right)\)
\(=1+\frac{1}{2}.2.3:2+\frac{1}{3}.3.4:2+\frac{1}{4}.4.5:2+...+\frac{1}{20}.20.21:2\)
\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{21}{2}\)
\(=\frac{2+3+4+5+...+21}{2}=115\)