Cho tứ diện SABC có tam giác ABC vuông tại B; SA ⊥ (ABC)
a) Chứng minh : BC ⊥ (SAB)
b) Gọi AH là đường cao của ΔSAB. Chứng minh : AH⊥SC
Cho tứ diện SABC có ABC là tam giác vuông cân tại A, đường cao SA. Biết đường cao AH của tam giác ABC bằng a, góc giữa mặt phẳng (SBC) và mặt phẳng (ABC) bằng 60 0 .Tính theo a thể tích khối tứ diện SABC
A . a 3 6 3
B . a 3 3 3
C . 2 a 3 6 3
D . a 3 2 3
Cho tứ diện SABC có tam giác ABC vuông tại B, AB = a , BC = a 3 và SA = a 2 , SB = a 2 , SC = a 5 . Tính bán kính mặt cầu ngoại tiếp tứ diện S.ABC.
A. R = a 37 28
B. R = a 259 7
C. R = a 259 14
D. R = a 37 14
Cho hình tứ diện SABC có đáy ABC là tam giác vuông tại B, có AB = a, BC =a\(\sqrt{5}\), SA vuông góc với (ABC), SA = a\(\sqrt{6}\)
a) Tính (SB;(ABC))
b) Tính (SA;(SBC))
a: (SB;(ABC))=(SB;BA)=góc SBA
\(\tan SBA=\dfrac{SA}{AB}=\sqrt{6}\)
=>góc SBA=68 độ
b: (SA;(SBC))=(SA;SB)=góc ASB
tan ASB=AB/SA=1/căn 6
=>góc ASB=22 độ
Cho tứ diện SABCD có ABC là tam giác vuông cân tại A, đường cao SA Biết đường cao AH của tam giác ABC bằng a, góc giữa mặt phẳng (SBC) và mặt phẳng (ABC) bằng 60 ° .Tính theo a thể tích khối tứ diện SABC
A. a 3 6 3
B. a 3 3 3
C. 2 a 3 6 3
D. a 3 2 3
Cho tứ diện SABC có SA vuông góc với mặt phẳng (ABC) và tam giác ABC vuông tại B. Trong mp(SAB), kẻ AM vuông góc với SB tại M. Trên cạnh SC lấy điểm N sao cho SM/SB = SN/SC .
Chứng minh rằng:
a) BC ⊥ (SAB), AM ⊥ (SBC)
b) SB ⊥ AN
Cho tam giác vuông cân ABC có cạnh huyền AB = 2a. Trên đường thẳng d đi qua A và vuông góc với mặt phẳng (ABC), lấy một điểm S khác A, ta được tứ diện SABC. Xác định tâm mặt cầu ngoại tiếp tứ diện SABC.
Gọi I là trung điểm của cạnh AB. Vì tam giác ABC vuông cân tại C nên ta có IA = IB = IC. Vậy I là tâm đường tròn ngoại tiếp tam giác ABC. Do đó, tâm mặt cầu ngoại tiếp tứ diện SABC phải nằm trên đường thẳng d’ vuông góc với mặt phẳng (ABC) tại I. Ta suy ra d’ // d. Do đó d’ cắt SB tại trung điểm O của đoạn SB. Ta có OB = OS = OA = OC và như vậy O là tâm đường tròn ngoại tiếp tứ diện SABC.
cho tam giác ABC có AM=NC=1/4 AC, AI=IB, Sabc = 168cm2 , Mi cắt Cb tại D . tính diện tích tam giác BNC,tính diện tích tứ giác DMNB
Gọi E là trung điểm của AB, ta có ME song song với CN và ME = 1/2 AC = CN. Vậy tam giác MEC và tam giác NCB đồng dạng với tỉ số 1:2. Từ đó, ta có:
• Diện tích tam giác MEC là 1/4 diện tích tam giác ABC, hay S_MEC = 1/4 S_ABC = 42cm^2.
• Diện tích tam giác NCB là 3/4 diện tích tam giác ABC, hay S_NCB = 3/4 S_ABC = 126cm^2.
Gọi F là trung điểm của BC, ta có EF song song với DM và EF = 1/2 IB = AL. Vậy tứ giác DMNB và tứ giác AEFB đồng dạng với tỉ số 1:2. Từ đó, ta có:
• Diện tích tứ giác AEFB là 1/2 diện tích tứ giác ABCD, hay S_AEFB = 1/2 S_ABCD = 84cm^2.
• Diện tích tứ giác DMNB là 1/2 diện tích tứ giác AEFB, hay S_DMNB = 1/2 S_AEFB = 42cm^2.
Vậy diện tích tam giác BNC là 126cm^2 và diện tích tứ giác DMNB
là 42cm^2.
Cho tứ diện $S.ABC$ có tam giác $ABC$ vuông tại $B$ và $SA \perp (ABC)$. Chứng minh tứ diện $S.ABC$ có tất cả các mặt là tam giác vuông?
SA vg (ABC)=> SAB,SAC vuông
SA vg BC, AB vg BC => BCvg (SAB) =>SB vg BC=> SBC vuông
vậy all mặt đều vuông
\(\hept{\begin{cases}SA\perp\left(ABC\right)\\AB\subset\left(ABC\right)\end{cases}}\) \(\Rightarrow SA\perp AB\Rightarrow\) tam giác SAB vuông (1)
\(\hept{\begin{cases}SA\perp\left(ABC\right)\\AC\subset\left(ABC\right)\end{cases}\Rightarrow AC\perp SA\Rightarrow}\) tam giác SAC vuông (2)
Tam giác ABC vuông tại B (gt) (3)
\(\Rightarrow AB\perp BC\)
\(\hept{\begin{cases}SA\perp\left(ABC\right)\\BC\subset\left(ABC\right)\end{cases}\Rightarrow SA\perp BC}\)
\(\hept{\begin{cases}AB\perp BC\\SA\perp BC\end{cases}\Rightarrow\hept{\begin{cases}BC\perp\left(SAB\right)\\SB\subset\left(SAB\right)\end{cases}\Rightarrow}SB\perp BC\Rightarrow}\) Tam giác SBC vuông (4)
\(\left(1\right);\left(2\right);\left(3\right);\left(4\right)\Rightarrowđpcm\)
dđay nhé anh cao thành đô cho em nhé anh
Cho tam giác vuông cân ABC có cạnh AB = 2a. Trên đường thẳng d đi qua A và vuông góc với mặt phẳng (ABC), lấy một điểm S khác K, ta được tứ diện SABC
a) Xác định tâm mặt cầu ngoại tiếp tứ diện SABC
b) Tính bán kính của mặt cầu ngoại tiếp tứ diện SABC trong trường hợp mặt phẳng (SBC) tạo với mặt phẳng (ABC ) một góc bằng \(30^0\)
Vậy \(SB^2=\dfrac{6a^2}{9}+4a^2=\dfrac{42a^2}{9}\)
Do đó \(SB=\dfrac{a\sqrt{42}}{3}\)
Ta suy ra :
\(r=\dfrac{SB}{2}=\dfrac{a\sqrt{42}}{6}\)