Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Phương Phương Linh
Xem chi tiết
Đông Pham
Xem chi tiết
Đinh Trí Gia BInhf
18 tháng 4 2023 lúc 20:29

loading...

Đinh Trí Gia BInhf
18 tháng 4 2023 lúc 20:13

đb bị thiếu nhá bn, mik bổ sung ns sẽ thành: thỏa mãn a\(\le b\le c\)

Đinh Trí Gia BInhf
18 tháng 4 2023 lúc 20:29

Ta có \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\le\dfrac{b}{a}+\dfrac{a}{c}+\dfrac{c}{b}\)

bn tự chuyển vế quy đồng, sau đó ghép cặp nha

\(\dfrac{a^2\left(c-b\right)+b^2\left(a-c\right)+c^2\left(b-a\right)}{abc}\)

\(\dfrac{a^2\left(c-b\right)-b^2\left(a-c\right)+c^2\left(b-a\right)}{abc}\)

\(\dfrac{a^2\left(c-b\right)-b^2\left(c-b+b-a\right)+c^2\left(b-a\right)}{abc}\le0\)

\(\dfrac{a^2\left(c-b\right)-b^2\left(c-b\right)-b^2\left(b-a\right)+c^2\left(b-a\right)}{abc}0\le\)

\(\dfrac{\left(a-c\right)\left(a+b\right)\left(c-b\right)-\left(b-c\right)\left(b+c\right)\left(b-a\right)}{abc}\le0\)

\(\dfrac{\left(a-b\right)\left(c-b\right)\left[\left(a+b\right)-\left(b+c\right)\right]}{abc}\le0\)

\(\dfrac{\left(a-b\right)\left(c-b\right)\left(a-c\right)}{abc}\le0\)

 

Vì: \(0< a\le b\le c\) nên a-b <0; \(c-b\ge0\) \(a-c\le0\)

=>(a-b)(c-b)(a-c) \(\le\) 0 =>\(\dfrac{\left(a-b\right)\left(c-b\right)\left(a-c\right)}{abc}\le0\) ( đpcm)

Tích mình nhá, các bạn CTV hoặc thầy cô có thể kiểm tra lại xem em có làm đúng ko nhá ( đánh máy vội nên sẽ bị sai vài chỗ nên bn nhớ để ý nha )

Nguyễn Thị Mỹ Lệ
Xem chi tiết
 Mashiro Shiina
13 tháng 1 2018 lúc 17:24

Eo : \(ab.bc.ca\le0\Leftrightarrow\left(abc\right)^2\le0\)

Cái đề bài chẳng liên quan gì đến cái cm

Đông Pham
Xem chi tiết
Đinh Trí Gia BInhf
18 tháng 4 2023 lúc 22:39

loading...

Tham khảo nhé !

Phạm Minh Quân
Xem chi tiết
Khôi Bùi
14 tháng 6 2021 lúc 23:12

Thấy : \(a;b;c\ge0;a+b+c=1\)  \(\Rightarrow1-a;1-b;1-c\ge0\)

AD BĐT AM - GM ta được :  \(4\left(1-a\right)\left(1-c\right)\le\left(2-a-c\right)^2=\left[2-\left(1-b\right)\right]^2=\left(b+1\right)^2\)

\(\Rightarrow4\left(1-a\right)\left(1-b\right)\left(1-c\right)\le\left(1-b\right)\left(b+1\right)^2=\left(1-b^2\right)\left(b+1\right)\le1.\left(b+1\right)=b+1=b+\left(a+b+c\right)=a+2b+c\)

( đpcm ) 

Phan Trần Thu Nga
Xem chi tiết
Phan Trần Thu Nga
30 tháng 8 2018 lúc 11:45

giúp mình đi

thanks nhiều

Lê nhật anh
Xem chi tiết
nghĩa
Xem chi tiết
=) =)
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 8 2021 lúc 16:12

Đặt \(x=\sqrt[3]{5\sqrt[]{2}+7}-\sqrt[3]{5\sqrt[]{2}-7}\)

\(\Rightarrow x^3=14-3\sqrt[3]{\left(5\sqrt[]{2}+7\right)\left(5\sqrt[]{2}-7\right)}\left(\sqrt[3]{5\sqrt[]{2}+7}-\sqrt[3]{5\sqrt[]{2}-7}\right)\)

\(\Rightarrow x^3=14-3x\)

\(\Rightarrow x^3+3x-14=0\)

\(\Rightarrow\left(x-2\right)\left(x^2+2x+7\right)=0\)

\(\Rightarrow x-2=0\)

\(\Rightarrow x=2\)

\(\Rightarrow a+b+c=2\)

Đến đây sẽ giải là:

\(\Rightarrow\left(a+b+c\right)^2=4\)

\(\Rightarrow1+2\left(ab+bc+ca\right)=4\)

\(\Rightarrow ab+bc+ca=\dfrac{3}{2}\)?

Không phải, đề bài sai

Ta có: \(a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=\sqrt{3}< 2\)

Nên \(a+b+c=2\) là vô lý

\(\Rightarrow\) Không tồn tại bộ 3 số thực a;b;c thỏa mãn \(\left\{{}\begin{matrix}a+b+c=2\\a^2+b^2+c^2=1\end{matrix}\right.\)