Chứng minh đẳng thức sau:
\(\left(-1\right)^n.a^{n+k}=\left(-a\right)^n.a^k\)
Chứng minh các đẳng thức sau:
a) \(\left[-a^5.\left(-a^5\right)\right]^2+\left[-a^2.\left(-a\right)^2\right]^5=0\)
b) \(\left(-1\right)^n.a^{n+k}=\left(-a\right)^n.a^k\)
CM BẤT ĐẲNG THỨC
A;[-A^5.(-A^5)]^2+[-A^2.(-A^2)]^5=0
B;(-1)^N.A^N+K=(--A)^N.A^K
\(A=\left[-a^5.\left(-a^5\right)\right]^2+\left[-a^2.\left(-a^2\right)\right]^5=0\)O
=>\(\left(-a^{10}\right)^2+\left(-a^4\right)^5=a^{20}-a^{20}=0\)
\(B;\left(-1\right)^n.a^{a+k}=\left(-a\right)^n.a^k\)
\(=\left(-1\right)^n.a^n.a^k=\left(-1.a\right)^n.a^k\)
=\(\left(-a^n\right).a^k\)
Cho k là số nguyên dương bất kì. Chứng minh bất đẳng thức sau \(\frac{1}{\left(k+1\right)\sqrt{k}}< 2\left(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\right)\)
Cho \(a\in R\)sao cho \(a\left(a+n\right)=k\) hoặc \(a\left(a-n\right)=k\)(\(x,k\in R\)cho trước). Chứng minh chỉ có 1 nghiệm a duy nhất thoả mãn đẳng thức trên.
chung minh cac dang thuc sau:
a,(-a^5.(a^5))^2+(-a^@.(-a^2))^5=0
b,(-1)^n.a^n+k=(-a)^n.a^x
chứng minh: \(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)=3k\left(k+1\right)\)
trong đó k thuộc N*
từ đó suy ra công thức tính tổng
\(S=1.2+2.3+3.4+...+n\left(n+1\right)\)
\(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)=k\left(k+1\right)\left[\left(k+2\right)-\left(k-1\right)\right]=3k\left(k+1\right)\)
Công thức tinh tổng là : \(S=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
\(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)=k\left(k+1\right)\left(k+2-k+1\right)=3k\left(k+1\right)\left(ĐPCM\right)\)
\(S=1.2+2.3+3.4+...+n\left(n+1\right)\)
3\(S=3\left[1.2+2.3+3.4+...+n\left(n+1\right)\right]\)
\(3S=1.2.3-0.1.2+2.3.4-1.2.3+...+n\left(n+1\right)\left(n+2\right)-\left(n-1\right)n\left(n+1\right)\)
3S=n(n+1)(n+2)
\(S=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
CMR
\(\frac{a}{n.\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\)(n.a thuộc N*)
Xét VP,ta có:
\(VP=\frac{1}{n}-\frac{1}{n+a}=\frac{n+a}{n\left(n+a\right)}-\frac{n}{n\left(n+a\right)}=\frac{n+a-n}{n\left(n+a\right)}=\frac{a}{n\left(n+a\right)}\)
Mà \(VT=\frac{a}{n\left(n+a\right)}\)
=>VT=VP
=>\(\frac{a}{n\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\)
Chứng minh đẳng thức, bất đẳng thức sau: \(\left(2+1\right).\left(2^2+1\right).\left(2^4+1\right).\left(2^8+1\right).\left(2^{16}+1\right)=2^{32}-1\)
\(VT=1.\left(2+1\right)\left(2^2+1\right)...\left(2^{16}+1\right)\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)...\left(2^{16}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{16}+1\right)\)
\(=...=\left(2^{16}-1\right)\left(2^{16}+1\right)=2^{32}-1\)
Chứng minh đẳng thức, bất đẳng thức sau: \(\left(2+1\right).\left(2^2+1\right).\left(2^4+1\right).\left(2^8+1\right).\left(2^{16}+1\right)=2^{32}-1\)