Tìm các số nguyên : x,y,z. Đồng thời thỏa mãn các điều kienj sau:
x^2 = y - 1
y^2 = z -1
z^2 = x - 1
Tìm các số thực x,y,z thỏa mãn đồng thời các điều kiện x-1/2=y+1/3=t-3/5 và 2x+y-z
1, tìm các số nguyên dương x,y,z thỏa mãn 8x+9y+10z=100 và x+y+z>11
2,tìm x là số nguyên lớn nhất thỏa mãn x< ( √5 +2)^8
3, tìm các số tự nhiên x,y,z thỏa mãn đồng thời (x-1) ³ +y ³ -2z ³ =0 và x+y+x=1
đg cần gấp lắm , help me!!
Tìm các số nguyên x ; y ; z đồng thời thỏa mãn :
x2 = y -1 , y2 = z -1 và z2 = x-1
Cho các số thực x, y, z thỏa mãn đồng thời các điều kiện sau x + y + z = 2, x^2 + y^2 z^2 = 18 và xyz = -1. Tính giá trị của S = 1/(xy + z - 1) + 1/(yz + x -1) + 1/(zx + y -1)
Tìm các số nguyên dương x,y,z thỏa mãn đồng thời 2 điều kiện sau
\(\frac{x-y\sqrt{2011}}{y-z\sqrt{2011}}\)là số hữu tỉ và \(^{x^2+y^2+z^2}\)là số nguyên tố
Tìm các số nguyên dương x,y,z thỏa mãn đồng thời hai điều kiện sau \(\frac{x-y\sqrt{2017}}{y-z\sqrt{2017}}\)là số hữu tỉ và \(x^2+y^2+z^2\)là số nguyên tố
Tìm các số thực x,y,z thỏa mãn dồng thời các điều kiện x-1/2=y+1/3=z-3/5 và 2x+y-z=0
Ta có: \(\dfrac{x-1}{2}=\dfrac{y+1}{3}=\dfrac{z-3}{5}\)
nên \(\dfrac{2x-2}{4}=\dfrac{y+1}{3}=\dfrac{z-3}{5}\)
mà 2x+y-z=0
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x-2}{4}=\dfrac{y+1}{3}=\dfrac{z-3}{5}=\dfrac{2x+y-z-2+1+3}{4+3-5}=\dfrac{2}{2}=1\)
Do đó: x=3; y=2; z=8
tìm các số nguyên dương x,y,z thảo mãn đồng thời 2 điều kiện:
(x-y.\(\sqrt[]{}\)2011)/(y-z.\(\sqrt{ }\)2011) là số hữu tỉ và x^2+y^2+z^2 là số nguyên tố
Tìm các số nguyên dương x, y, z thỏa mãn điều kiện ( x + 1) ( y + z) = xyz + 2.