Tìm các số nguyên dương x,y,z thỏa mãn điều kiện (x+1)(y+z)=xyz+2
Bài 1: Tìm các số nguyên x,y thỏa mãn xy+2x-3y=1
Bài 2: Tìm các số nguyên dương x,y,z thỏa mãn (x+1)(y+z)=xyz+2
tìm các số thực dương x;y;z thỏa mãn điều kiện
\(\int^{x^2+y^2+z^2=4\sqrt{xyz}}_{x+y+z=2\sqrt{xyz}}\)
Cho x,y,z là các số thực dương và thỏa mãn điều kiện x+y+z=xyz. Tìm giá thị lớn nhất của:
\(P=\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}+\frac{1}{\sqrt{1 +z^2}}\)
Tìm cá số x,y,z nguyên dương thỏa mãn (x+1)(y+z)=xyz+2
Cho 3 số thực dương thỏa mãn x , y ,z thỏa mãn điều kiện x + y + z = xyz . Tìm Min của biểu thức
\(Q =\frac{y+2}{x^2}+\frac{z+2}{y^2}+\frac{x+2}{z^2}\)
- Đề thi vào 10 Thanh Hóa 2020 - 2021 -
a)tìm các cặp số nguyên dương x,y thỏa mãn: 2x^2+3y^2-5xy-x+3y-4=0
b) các số x,y,z thỏa mãn điều kiện x^2+y^2+z^2=2014. tìm giá trị nhỏ nhất của M=2xy-yz-xz
Cho x,y,z là các số dương thay đổi và luôn thỏa mãn điều kiện xyz=1. Tìm giá trị nhỏ nhất của biểu thức :
\(P=\frac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)
Cho các số dương a,b,c,x,y,z thỏa mãn các điều kiện a+b+c =9 , ax+by+cz = xyz . Chứng minh rằng : x + y + z > 6