Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Thị Hằng
Xem chi tiết
Annie Scarlet
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 3 2019 lúc 0:22

\(\frac{1}{a}+\frac{1}{c}=\frac{1}{a-b+c}+\frac{1}{b}\Leftrightarrow\frac{a+c}{ac}=\frac{a+c}{b\left(a-b+c\right)}\)

\(\Rightarrow\left[{}\begin{matrix}a+c=0\\ac=b\left(a-b+c\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a=-c\\ac=b\left(a-b\right)+bc\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}a=-c\\ac-bc-b\left(a-b\right)=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a=-c\\\left(c-b\right)\left(a-b\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}a=-c\\a=b\left(l\right)\\b=c\left(l\right)\end{matrix}\right.\) do \(a< b< c\) \(\Rightarrow a=-c\)

\(\Rightarrow\frac{1}{a^{2019}}-\frac{1}{b}+\frac{1}{c^{2019}}=\frac{1}{a^{2019}}-\frac{1}{b}-\frac{1}{a^{2019}}=\frac{-1}{b}\)

\(\frac{1}{a^{2019}-b+c^{2019}}=\frac{1}{a^{2019}-b-c^{2019}}=\frac{-1}{b}\)

\(\Rightarrow\frac{1}{a^{2019}}-\frac{1}{b}+\frac{1}{c^{2019}}=\frac{1}{a^{2019}-b+c^{2019}}\)

Nguyễn Thị Minh Châu
Xem chi tiết
Akai Haruma
2 tháng 12 2019 lúc 19:53

Bài 1:

\(A=\frac{1}{a-b}+\frac{1}{a+b}+\frac{2a}{a^2+b^2}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)

\(=\frac{a+b+a-b}{(a-b)(a+b)}+\frac{2a}{a^2+b^2}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}=\frac{2a}{a^2-b^2}+\frac{2a}{a^2+b^2}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)

\(=(2a).\frac{a^2+b^2+a^2-b^2}{(a^2-b^2)(a^2+b^2)}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)

\(=\frac{4a^3}{a^4-b^4}+\frac{4a^3}{a^4+b^4}+\frac{8a^7}{a^8+b^8}\)

\(=4a^3.\frac{a^4+b^4+a^4-b^4}{(a^4-b^4)(a^4+b^4)}+\frac{8a^7}{a^8+b^8}=\frac{8a^7}{a^8-b^8}+\frac{8a^7}{a^8+b^8}=8a^7.\frac{a^8+b^8+a^8-b^8}{(a^8-b^8)(a^8+b^8)}\)

\(=\frac{16a^{15}}{a^{16}-b^{16}}\)

--------------

\(B=\frac{1}{a(a+1)}+\frac{1}{(a+1)(a+2)}+\frac{1}{(a+2)(a+3)}=\frac{(a+1)-a}{a(a+1)}+\frac{(a+2)-(a+1)}{(a+1)(a+2)}+\frac{(a+3)-(a+2)}{(a+2)(a+3)}\)

\(=\frac{1}{a}-\frac{1}{a+1}+\frac{1}{a+1}-\frac{1}{a+2}+\frac{1}{a+2}-\frac{1}{a+3}\)

\(=\frac{1}{a}-\frac{1}{a+3}=\frac{3}{a(a+3)}\)

Khách vãng lai đã xóa
Akai Haruma
2 tháng 12 2019 lúc 19:56

Bài 2:

Bạn tham khảo lời giải tương tự tại link sau:

Câu hỏi của Law Trafargal - Toán lớp 8 | Học trực tuyến

Khách vãng lai đã xóa
giap hoang
Xem chi tiết
ST
14 tháng 11 2018 lúc 11:38

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)

\(\Leftrightarrow\frac{a+b}{ab}=\frac{-\left(a+b\right)}{c\left(a+b+c\right)}\Leftrightarrow c\left(a+b+c\right)\left(a+b\right)=-ab\left(a+b\right)\)

\(\Leftrightarrow\left(ac+bc+c^2\right)\left(a+b\right)+ab\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2+ab\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

=> a=-b hoặc b=-c hoặc c=-a

không mất tính tổng quát ,giả sử a=-b, ta có:

\(\frac{1}{a^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{-b^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{c^{2019}}\left(1\right)\)

\(\frac{1}{a^{2019}+b^{2019}+c^{2019}}=\frac{1}{-b^{2019}+b^{2019}+c^{2019}}=\frac{1}{c^{2019}}\left(2\right)\)

Từ  (1) và (2) => đpcm

Tương tự với 2 trường hợp còn lại ta cũng có đpcm

NGuyễn Ngọc Hạ Vy
Xem chi tiết
ST
30 tháng 10 2018 lúc 21:43

\(a+b=c+\frac{1}{2019}\Leftrightarrow a+b-c=\frac{1}{2019}\Leftrightarrow\frac{1}{a+b-c}=2019\)

\(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}+2019\Rightarrow\frac{1}{a}+\frac{1}{b}-\frac{1}{c}=2019\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}-\frac{1}{c}=\frac{1}{a+b-c}\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b-c}+\frac{1}{c}\)

\(\Leftrightarrow\frac{a+b}{ab}=\frac{a+b}{c\left(a+b-c\right)}\Leftrightarrow c\left(a+b-c\right)\left(a+b\right)=\left(a+b\right)ab\)

\(\Leftrightarrow c\left(a+b-c\right)\left(a+b\right)-ab\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ca+bc-c^2-ab\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left[c\left(a-c\right)-b\left(a-c\right)\right]=0\)

\(\Leftrightarrow\left(a+b\right)\left(c-b\right)\left(a-c\right)=0\)

=>a=-b hoặc c=b hoặc a=c

không mất tính tổng quát, giả sử a=-b, ta có:

\(P=\left(-b^{2019}+b^{2019}-c^{2019}\right)\left(-\frac{1}{b^{2019}}+\frac{1}{b^{2019}}-\frac{1}{c^{2019}}\right)=\left(-c\right)^{2019}\cdot\left(\frac{-1}{c}\right)^{2019}=1\)

tương tư với các trường hợp khác ta cũng có P=1

Vậy P=1

Nguyễn Đa Vít
Xem chi tiết
Nguyễn Linh Chi
9 tháng 8 2019 lúc 11:50

EM tham khảo phần đầu ở link: Câu hỏi của Đinh Nguyến Nhật Minh - Toán lớp 8 - Học toán với OnlineMath

Trong 3 số a,b, c có hai số đối nhau g/s 2 số đó là a và b kho đó a=-b 

=> \(\frac{1}{a^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{\left(-b\right)^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=-\frac{1}{b^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{c^{2019}}\)

và \(\frac{1}{a^{2019}+b^{2019}+c^{2019}}=\frac{1}{\left(-b\right)^{2019}+b^{2019}+c^{2019}}=\frac{1}{-b^{2019}+b^{2019}+c^{2019}}=\frac{1}{c^{2019}}\)

Do đó: \(\frac{1}{a^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{a^{2019}+b^{2019}+c^{2019}}\)

crush vô tình
Xem chi tiết
Witch Rose
1 tháng 7 2019 lúc 21:26

Thiếu dữ kiện, nếu chỉ cho vậy thì không tính đc gt cụ thể của A

+ Làm theo đề là tìm Min của A nhé!

\(A=\frac{a}{2019-c}+\frac{b}{2019-a}+\frac{c}{2019-b}=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}.\)

\(A+3=\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}=\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)\(\ge\left(a+b+c\right)\frac{9}{2\left(a+b+c\right)}=\frac{9}{2}\)(BĐT Bunhia)

Dấu "=" xra khi a=b=c=2019/3

An Phương Hà
Xem chi tiết
zZz Cool Kid_new zZz
18 tháng 1 2019 lúc 20:09

\(\frac{2\left|2018x-2019\right|+2019}{\left|2018x-2019\right|+1}\)

\(=\frac{\left(2\left(\left|2018x-2019\right|+1\right)\right)+2017}{\left|2018x-2019\right|+1}\)

\(=2+\frac{2017}{\left|2018x-2019\right|+1}\)có giá trị lớn nhất

\(\Rightarrow\frac{2017}{\left|2018x-2019\right|+1}\)có giá trị lớn nhất

\(\Rightarrow\left|2018x-2019\right|+1\)có giá trị nhỏ nhất

Mà \(\left|2018x-2019\right|\ge0\)

\(\Rightarrow\left|2018x-2019\right|+1\ge1\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left|2018x-2019\right|=0\)

\(\Leftrightarrow x=\frac{2019}{2018}\)

Vậy \(M_{MAX}=2019\)tại \(x=\frac{2019}{2018}\)

zZz Cool Kid_new zZz
18 tháng 1 2019 lúc 20:46

\(\frac{5^x+5^{x+1}+5^{x+2}}{31}=\frac{3^{2x}+3^{2x+1}+3^{2x+2}}{13}\)

\(\Rightarrow\frac{5^x\left(1+5+5^2\right)}{31}=\frac{3^{2x}\left(1+3+3^2\right)}{13}\)

\(\Rightarrow\frac{5^x\cdot31}{31}=\frac{3^{2x}\cdot13}{13}\)

\(\Rightarrow5^x=3^{2x}\)

Mà \(\left(5;3\right)=1\)

\(\Rightarrow x=2x=0\)

๖ۣۜSۣۜN✯•Y.Šynˣˣ♂
18 tháng 1 2019 lúc 19:46

trả lời...............................

ok..................................

hk tốt...............................

Yêu nè
Xem chi tiết
Yêu nè
21 tháng 12 2019 lúc 20:03

Sửa đề chút:

-Cho tỉ lệ thức

-Yêu cầu CM tỉ lệ thức kia

Khách vãng lai đã xóa
Yêu nè
22 tháng 12 2019 lúc 16:18

Đặt  \(\frac{a}{b}=\frac{c}{d}=k\)

 \(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

\(\frac{a^{2019}+c^{2019}}{b^{2019}+d^{2019}}=\frac{\left(bk\right)^{2019}+\left(dk\right)^{2019}}{b^{2019}+d^{2019}}=\frac{b^{2019}.k^{2019}+d^{2019}.k^{2019}}{b^{2019}+d^{2019}}=\frac{k^{2019}.\left(b^{2019}+d^{2019}\right)}{b^{2019}+d^{2019}}=k^{2019}\)(1)

\(\frac{\left(a+c\right)^{2019}}{\left(b+d\right)^{2019}}=\frac{\left(bk+dk\right)^{2019}}{\left(b+d\right)^{2019}}=\frac{[k.\left(b+d\right)]^{2019}}{\left(b+d\right)^{2019}}=\frac{k^{2019}.\left(b+d\right)^{2019}}{\left(b+d\right)^{2019}}=k^{2019}\)(2)

Từ (1) và (2) \(\Rightarrow\frac{a^{2019}+c^{2019}}{b^{2019}+d^{2019}}=\frac{\left(a+c\right)^{2019}}{\left(b+d\right)^{2019}}\)

Mình viết sai đề đó nha

Khách vãng lai đã xóa
kagasi
Xem chi tiết
Me
5 tháng 11 2019 lúc 12:00

                                                            Bài giải

* Từ \(\frac{a}{b}=\frac{c}{d}\text{ }\Rightarrow\text{ }\frac{a}{c}=\frac{b}{d}\text{ }\Rightarrow\text{ }\frac{a^{2019}}{c^{2019}}=\frac{b^{2019}}{d^{2019}}=\frac{a^{2019}+b^{2019}}{c^{2019}+d^{2019}}\text{ ( * ) }\)

* Từ \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\text{ }\Rightarrow\text{ }\frac{a^{2019}}{c^{2019}}=\frac{\left(a-b\right)^{2019}}{\left(c-d\right)^{2019}}\left(\text{**}\right)\)

* Từ \(\left(\text{*}\right),\left(\text{**}\right)\Rightarrow\text{ ĐPCM}\)

Khách vãng lai đã xóa