\(\frac{1}{a}+\frac{1}{c}=\frac{1}{a-b+c}+\frac{1}{b}\Leftrightarrow\frac{a+c}{ac}=\frac{a+c}{b\left(a-b+c\right)}\)
\(\Rightarrow\left[{}\begin{matrix}a+c=0\\ac=b\left(a-b+c\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a=-c\\ac=b\left(a-b\right)+bc\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a=-c\\ac-bc-b\left(a-b\right)=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a=-c\\\left(c-b\right)\left(a-b\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}a=-c\\a=b\left(l\right)\\b=c\left(l\right)\end{matrix}\right.\) do \(a< b< c\) \(\Rightarrow a=-c\)
\(\Rightarrow\frac{1}{a^{2019}}-\frac{1}{b}+\frac{1}{c^{2019}}=\frac{1}{a^{2019}}-\frac{1}{b}-\frac{1}{a^{2019}}=\frac{-1}{b}\)
\(\frac{1}{a^{2019}-b+c^{2019}}=\frac{1}{a^{2019}-b-c^{2019}}=\frac{-1}{b}\)
\(\Rightarrow\frac{1}{a^{2019}}-\frac{1}{b}+\frac{1}{c^{2019}}=\frac{1}{a^{2019}-b+c^{2019}}\)