Lời giải:
Do $abc=1$ nên:
$a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=bc+ac+ab$
$\Leftrightarrow ab+bc+ac-a-b-c=0$
$\Leftrightarrow (ab-a-b+1)+bc+ac-c-1=0$
$\Leftrightarrow (ab-a-b+1)+bc+ac-c-abc=0$
$\Leftrightarrow (ab-a-b+1)+c(b+a-1-ab)=0$
$\Leftrightarrow (ab-a-b+1)(1-c)=0$
$\Leftrightarrow (a-1)(b-1)(1-c)=0$
$\Leftrightarrow (a-1)(b-1)(c-1)=0$
Do đó:
$P=(a^{2019}-1)(b^{2019}-1)(c^{2019}-1)=(a-1)(a^{2018}+...+1)(b-1)(b^{2019}+...+1)(c-1)(c^{2020}+...+1)$
$=(a-1)(b-1)(c-1).(a^{2018}+...+1)(b^{2019}+...+1)(c^{2020}+...+1)=0$