Bài 1. Cho a+b+c=0. Đặt P=\(\frac{a-b}{b}+\frac{b-c}{a}+\frac{c-a}{b}\); Q=\(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\).Tính P.Q
b) Rút gọn rồi tính giá trị biểu thức E=\(\frac{\left(a-x\right)^2}{a\left(b-a\right)\left(c-a\right)}+\frac{\left(b-x\right)^2}{b\left(a-b\right)\left(c-b\right)}+\frac{\left(c-x\right)^2}{c\left(a-c\right)\left(b-c\right)}\)biết \(1-\frac{x^2}{abc}=0\)
a) CMR biểu thức ko âm với mọi x,y,z.
M=4x(x+y)(x+y+z)(x+z)+y2z2
b) Tính giá trị của biểu thức
E=\(\frac{\left(a-x\right)^2}{a\left(b-a\right)\left(c-a\right)}\) + \(\frac{\left(b-x\right)^2}{b\left(a-b\right)\left(c-b\right)}\) +\(\frac{\left(c-x\right)^2}{c\left(a-c\right)\left(b-c\right)}\) biết 1-\(\frac{x^2}{abc}\) =0
1) Cho a^3+b^3+c^3=3abc và abc khác 0. Tính giá trị của P=\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
2) Tính giá trị biểu thức A= \(\frac{a^3+b^3+c^3-3abc}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)
với a khác b, hoặc b khác c, hoặc c khác a
3) Tính giá trị biểu thức B= \(\frac{\left(x^2-y^2\right)^3+\left(y^2-z^2\right)^3+\left(z^2-x^2\right)^3}{\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3}\)
với x khác y, hoặc y khác z, hoặc z khác x
4) Tính giá trị biểu thức C= \(\frac{\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3}{3\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
với x khác y; y khác z; z khác x
Cho a,b,c #0 giải phân thức:\(\frac{x}{\left(a-b\right).\left(a-c\right)}+\frac{x}{\left(b-a\right).\left(b-c\right)}+\frac{x}{\left(c-a\right).\left(c-b\right)}=2\)
Giải phương trình:
a,\(\frac{1}{a+b-x}=\frac{1}{a}+\frac{1}{b}+\frac{1}{x}\)(x là ẩn số)
b,\(\frac{\left(b-c\right)\left(1+a\right)^2}{x+a^2}+\frac{\left(c-a\right)\left(1+c\right)^2}{x+b^2}+\frac{\left(a-b\right)\left(1+c\right)^2}{x+c^2}=0\)
Giúp hộ!!!
CMR : \(\frac{b+c+d}{\left(b-a\right)\left(c-a\right)\left(d-a\right)\left(x-a\right)}+\frac{c+d+a}{\left(c-d\right)\left(d-b\right)\left(a-b\right)\left(x-b\right)}+\frac{d+a+b}{\left(d-c\right)\left(a-c\right)\left(b-c\right)\left(x-c\right)}\)\(+\frac{a+b+c}{\left(a-d\right)\left(b-d\right)\left(c-d\right)\left(x-d\right)}\)\(=\frac{x-a-b-c-d}{\left(x-a\right)\left(x-b\right)\left(x-c\right)\left(x-d\right)}.\)
Giải phương trình:
\(\frac{\left(b-c\right)\left(1+a\right)^2}{x+a^2}+\frac{\left(c-a\right)\left(1+b\right)^2}{x+b^2}+\frac{\left(a-b\right)\left(1+c\right)^2}{x+c^2}=0\)
(a,b,c là hằng số và đôi một khác nhau)
1/rút gọn biểu thức:
\(A=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}+\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
xác định các số hữu tỉ a,b,c,d sao cho:
a,\(\frac{1}{x\left(x+1\right)\left(x+2\right)}=\frac{a}{x\left(x+1\right)}+\frac{b}{\left(x+1\right)\left(x+2\right)}\)
b,\(\frac{x^3}{x^4-1}=\frac{a}{x-1}+\frac{b}{x+1}+\frac{cx+d}{x^2+1}\)
c,\(\frac{2x^2-x+1}{\left(x+1\right)\left(x-2\right)^2}=\frac{a}{x+1}+\frac{b}{x-2}+\frac{c}{x-2}\)