Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
BL
Xem chi tiết
Đoàn Duy Nhật
30 tháng 1 2022 lúc 10:59

=49/99 NHA

HT

k cho mình nha

@@@@@@@@@@@@@@@@@@

Khách vãng lai đã xóa
Xyz OLM
30 tháng 1 2022 lúc 10:27

\(P=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{99}\right)=\frac{1}{2}.\frac{98}{99}=\frac{49}{99}\)

Khách vãng lai đã xóa
Cậu chủ họ Lương
30 tháng 1 2022 lúc 10:28

Đặt \(A=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\)

2A=\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\)

2A=\(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{97}-\frac{1}{99}\)

2A=\(1-\frac{1}{99}\)

A=\(\frac{49}{99}\)

Chúc bạn học tốt

HYC-30/1/2022

Khách vãng lai đã xóa
deptraiphaithe
Xem chi tiết
Edowa Conan
8 tháng 8 2016 lúc 17:26

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(=\frac{1}{3}.\left(1-\frac{1}{99}\right)\)

\(=\frac{1}{3}.\frac{98}{99}\)

\(=\frac{98}{297}\)

Chuc bn học tốtbanh

Lê Nguyên Hạo
8 tháng 8 2016 lúc 17:26

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{99}\)

\(=1-\frac{1}{99}\)

\(=\frac{98}{99}\)

Isolde Moria
8 tháng 8 2016 lúc 17:26

Đặt tổng là M

Ta có

\(M=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{97}-\frac{1}{99}\right)\)

\(\Rightarrow M=\frac{1}{2}\left(1-\frac{1}{99}\right)\)

\(\Rightarrow M=\frac{1}{2}.\frac{98}{99}=\frac{49}{99}\)

Vương Hoàng Thảo Ngân
Xem chi tiết
Phùng Minh Quân
25 tháng 4 2018 lúc 19:39

Ta có : 

\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)

\(A=\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)

\(A=\frac{3}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)

\(A=\frac{3}{2}\left(1-\frac{1}{51}\right)\)

\(A=\frac{3}{2}.\frac{50}{51}\)

\(A=\frac{25}{17}\)

Vậy \(A=\frac{25}{17}\)

Chúc bạn học tốt ~ 

Nguyễn Thanh Hiền
25 tháng 4 2018 lúc 19:52

\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)

\(A=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)

\(A=\frac{3}{2}\left(1-\frac{1}{51}\right)\)

\(A=\frac{3}{2}.\frac{50}{51}\)

\(A=\frac{25}{17}\)

\(B=\frac{21}{4}\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{3333}{4242}\right)\)

\(B=\frac{21}{4}\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)

\(B=\frac{21}{4}\left(\frac{33}{3.4}+\frac{33}{4.5}+\frac{33}{5.6}+\frac{33}{6.7}\right)\)

\(B=\frac{21}{4}.33.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)

\(B=\frac{21}{4}.33.\left(\frac{1}{3}-\frac{1}{7}\right)\)

\(B=\frac{21}{4}.33.\frac{4}{21}\)

\(B=\left(\frac{21}{4}.\frac{4}{21}\right).33\)

\(B=33\)

\(C=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

\(C=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(C=\frac{1}{2}\left(1-\frac{1}{99}\right)\)

\(C=\frac{1}{2}.\frac{98}{99}\)

\(C=\frac{49}{99}\)

Myy_Yukru
25 tháng 4 2018 lúc 19:52

\(A=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{49.51}\)

\(A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{21}\)

\(A=1-\frac{1}{51}\)

\(A=\frac{51}{51}-\frac{1}{51}\)

\(A=\frac{50}{51}\)

\(A=\frac{21}{4}.\left(\frac{3333}{1212}+\frac{3333}{2020}+\frac{3333}{3030}+\frac{3333}{4242}\right)\)

\(A=\frac{21}{4}.\left(\frac{33.101}{12.101}+\frac{33.101}{20.101}+\frac{33.101}{30.101}+\frac{33.101}{42.101}\right)\)

\(A=\frac{21}{4}.\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)

\(A=\frac{21}{4}.33\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\)

\(A=\frac{21}{4}.33\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)\)

\(A=\frac{21}{4}.33\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)

\(A=\frac{21}{4}.33\left(\frac{1}{3}-\frac{1}{7}\right)\)

\(A=\frac{21}{4}.33.\frac{4}{21}\)

\(A=33\)

\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

\(A=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)\)

\(A=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(A=\frac{1}{2}\left(1-\frac{1}{99}\right)\)

\(A=\frac{1}{2}.\frac{98}{99}\)

\(A=\frac{49}{99}\)

nguyen thanh thao
Xem chi tiết
bảo nam trần
23 tháng 2 2017 lúc 15:50

\(S=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{99}\right)\)

\(=\frac{1}{2}.\frac{98}{99}=\frac{49}{99}\)

Quang Duy
23 tháng 2 2017 lúc 15:53

S=\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+......+\frac{1}{95.97}+\frac{1}{97.99}\)

S=\(\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.......+\frac{1}{97}-\frac{1}{99}\right)\)

S=\(\frac{1}{2}.\left(1-\frac{1}{99}\right)\)

S=\(\frac{1}{2}.\frac{98}{99}\)

S=\(\frac{49}{99}\)

Trương Hồng Hạnh
23 tháng 2 2017 lúc 15:58

S = \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

= \(\frac{1}{2}\) . (\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\))

= \(\frac{1}{2}\). (\(1-\frac{1}{99}\))

= \(\frac{1}{2}\). \(\frac{98}{99}\) = \(\frac{49}{99}\)

Lee Kio
Xem chi tiết
NGUYỄN THỊ TRÀ GIANG
18 tháng 3 2016 lúc 14:00

=1/3-1/5+1/5-1/7+1/7-1/9+....+1/97-1/99

= 1/3 -1/99

=32/99

NGUYỄN THỊ TRÀ GIANG
18 tháng 3 2016 lúc 14:06

tích cho mình nha

=1/3-1/5+1/7-1/7+1/9-1/9+...+1/97-1/99

=1/3-1/99

=32/99

Nguyễn Thị Thủy Ngân
Xem chi tiết
Yim Yim
13 tháng 7 2018 lúc 8:48

\(A=\left(\frac{1}{2\cdot4}+\frac{1}{4\cdot6}+.........+\frac{1}{96\cdot98}\right)-\left(\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+.......+\frac{1}{97\cdot99}\right)\)

\(=\frac{1}{2}\left(\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+....+\frac{2}{96\cdot98}\right)-\frac{1}{2}\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+.....+\frac{2}{97\cdot99}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+......+\frac{1}{96}-\frac{1}{98}\right)-\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{98}\right)-\frac{1}{2}\left(\frac{1}{3}-\frac{1}{99}\right)\)

\(=\frac{12}{49}-\frac{16}{99}=\frac{404}{4851}\)

Vũ Nguyễn Hiếu Thảo
13 tháng 7 2018 lúc 8:55

sai đề nhé?!

Kamado Tanjiro
Xem chi tiết
Nguyễn Thị Phương Anh
2 tháng 1 2022 lúc 11:05

A = \(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

2A = 2 . \(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

2A = \(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\)

2A = \(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)

2A = \(\frac{1}{3}-\frac{1}{99}\)

2A = \(\frac{32}{99}\)

A = \(\frac{32}{99}\div2\)

A =\(\frac{16}{99}\)

_HT_

Khách vãng lai đã xóa
Nguyễn Hữu Huy
Xem chi tiết
Kiều Bích Huyền
29 tháng 1 2016 lúc 20:47

\(=\frac{2}{1.3.2}+\frac{2}{3.5.2}+\frac{2}{5.7.2}+...+\frac{2}{97.99.2}\)

\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{95}-\frac{1}{97}+\frac{1}{97}-\frac{1}{99}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{99}\right)=\frac{1}{2}.\frac{98}{99}=\frac{49}{99}\)

Đậu Thi Thi
29 tháng 1 2016 lúc 20:47

= 1-1/3+1/3-1/5+1/5-1/7+...+1/97-1/99

= 1 - 1/99

= 98/99

Thanh Tùng DZ
Xem chi tiết
Sky
25 tháng 2 2017 lúc 16:15

\(\frac{1}{x}-\frac{1}{9999}=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

\(\frac{1}{x}-\frac{1}{9999}=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(\frac{1}{x}-\frac{1}{9999}=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{99}\right)\)

\(\frac{1}{x}-\frac{1}{999}=\frac{1}{2}.\frac{98}{99}\)

\(\frac{1}{x}-\frac{1}{9999}=\frac{49}{99}\)

\(\frac{1}{x}=\frac{49}{99}+\frac{1}{9999}\)

\(\frac{1}{x}=\frac{50}{101}\)

\(x=1:\frac{50}{101}\)

\(x=\frac{101}{50}\)

Vậy \(x=\frac{101}{50}\)