bài 1 : tìm số tự nhiên x bt
a)144 ; 360 ; 2160 chia hết cho x và x >9
b) 45 ; 205 chia hết cho x và x < 10
ai nhanh mik tick nha
bài 1 :Tìm số tự nhiên biết
144 chia hết cho x,140 chia hết cho x (10<x<40)
Giải:
Vì 144 chia hết cho x,140 chia hết cho x
=> x thuộc ƯC(144;140)
mà ƯCLN(144;140)=4
=>ƯC(144;140)=Ư(4)={1;2;4}
mà 10<x<40
Vậy không có số tự nhiên x nào mà 144 và 140 chia hết trong khoảng 10<x<40.
Ta có: \(144⋮x;140⋮x\)
\(\Rightarrow x\inƯC\left(144;140\right)\)
Phân tích các số ra thừa số nguyên tố ta có:
144= 24 . 32
140 = 22 . 5.7
=> ƯCNN(144 ; 140) = 22 = 4
1)CMR: với mọi số tự nhiên n thì : A=5n+2+26.5n+82n+1
2) Với x \(\ge\) 0. Tìm GTNN của bt
a)P=\(\dfrac{\left(x+2\right)^2}{2x}\)
b)Q=\(\dfrac{\left(x+1\right)^2}{y}+\dfrac{4y}{x}\) với x>0,y>0
\(1,A=5^{n+2}+26\cdot5^n+8^{2n+1}\\ A=5^n\cdot25+26\cdot5^n+8\cdot8^{2n+1}\\ A=51\cdot5^n+8\cdot64^n\)
Ta có \(64:59R5\Rightarrow64^n:59R5\)
Vì vậy \(51\cdot5^n+8\cdot64^n:59R=5^n\cdot51+8\cdot5^n=5^n\left(51+8\right)=5^n\cdot59⋮59\)
Vậy \(A⋮59\)
(\(R\) là dư)
\(2,\\ a,2x\ge0;\left(x+2\right)^2\ge0,\forall x\\ \Leftrightarrow P=\dfrac{\left(x+2\right)^2}{2x}\ge0\\ P_{min}=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Tìm x, biết x là số tự nhiên và: (1/1*3+1/3*5+...+1/23*25)*((x+1)+(x+3)+(x+5)+...(x+23)=144
`(1/(1.3)+1/(3.5)+.......+1/(23.25))xx((x+1)+(x+3)+(x+5)+.....+(x+23))=144`
`(2/(1.3)+2/(3.5)+.......+2/(23.25))xx[(x+x+....+x)+(1+3+5+...+23)]=288`
`(1-1/3+1/3-1/5+.....+1/23-1/25)xx(12x+(24.12)/2)=288`
`(1-1/25)xx(12x+12.12)=288`
`24/25xx[12(x+12)]=288`
`24/25xx(x+12)=28`
`x+12=28:24/25=50`
`x=50-12=38`
Vậy `x=38`
Bài 1 : Tìm hai số tự nhiên a;b biết :
a +2b =48 và (a,b) +3.[a,b] =144
Bài 2:Tìm hai số tự nhiên a;b biết :
ƯCLN(a;b) + BCNN (a,b)=15
tìm số tự nhiên x, biết:
a) 35 ⋮ x, 105 ⋮ x và x > 5
b) 144 ⋮ x, 192 ⋮ x, 240 ⋮ x và x là số tự nhiên có 2 chữ số
a: \(35=5\cdot7;105=3\cdot5\cdot7\)
=>\(ƯCLN\left(35;105\right)=5\cdot7=35\)
\(35⋮x;105⋮x\)
=>\(x\inƯC\left(105;35\right)\)
=>\(x\inƯ\left(35\right)\)
=>\(x\in\left\{1;5;7;35\right\}\)
mà x>5
nên \(x\in\left\{7;35\right\}\)
b: \(144=2^4\cdot3^2;192=2^6\cdot3;240=2^4\cdot3\cdot5\)
=>\(ƯCLN\left(144;192;240\right)=2^4\cdot3=48\)
\(144⋮x;192⋮x;240⋮x\)
=>\(x\inƯC\left(192;144;240\right)\)
=>\(x\inƯ\left(48\right)\)
=>\(x\in\left\{1;2;3;4;6;8;12;16;24;48\right\}\)
mà 10<=x<=99
nên \(x\in\left\{12;16;24;48\right\}\)
1 tìm số tự nhiên x biết
2x+3+2x=144
2x+3+2x=144
2x.(23+1)=144
2x.9=144
2x = 144:9
2x=24
=> x=4
\(2^x.2^3+2^x.1=144\)
\(2^x.\left(2^3+1\right)=144\)
\(2^x.9=144\)
\(2^x=144:9\)
\(2^x=16\)
\(2^x=2^4\)
Vậy x=4
\(2^{x+3}+2^x=144\)
\(=>2^x\left(2^3+1\right)=144\)
\(=>2^x.9=144\)
\(=>2^x=2^4=>x=4\)
1)Tìm số tự nhiên a mà 144 chia hết cho a;192 chia hết cho a và a>20
2)Tìm số tự nhiên X, biết rằng x chia hết cho 12; x chia hết cho 21; x chia hết cho 28 và 150<x<300
Bài 2
x chia hết cho 12; 21; 28 => x ∈ BC(12;21;28)
12 = 22.3 ; 21 = 3.7; 28 = 22.7 => BCNN (12;21;28) = 22.3,7 = 84
=> x ∈ {0;84; 168; 252; 336;...}
Vì 150 < x < 300 nên x = 168 hoặc x = 252
ta có : 144=24.32
Bài 1 : ta có : 192=26.3 và 144=24.32
Vậy ƯCLN(144;192)=24.3=48
Vậy ƯC(144;192)={1;2;3;4;6;8;12;16;24;48}
Vậy các số cần tìm là : 24;48
\(1,\) Ta có \(144=3^2\cdot2^4;192=3\cdot2^6\)
\(\RightarrowƯCLN\left(144;192\right)=3\cdot2^4=48\)
\(\Rightarrow a\inƯ\left(48\right)=\left\{1;2;34;6;8;12;16;24;48\right\}\)
Mà \(a>20\)
\(\Rightarrow a\in\left\{24;48\right\}\)
Tìm số tự nhiên x biết:
a) 3x-1 + 5 . 3x-1 = 162 ; b) 2x + 3 + 2x = 144
bài 1 tìm x bt
a) 12.(5x-1)+4x.(5-3x5)=1
bài 1 tìm x bt
a) 12.(5x-1)+4x.(5-3x5)=1