`(1/(1.3)+1/(3.5)+.......+1/(23.25))xx((x+1)+(x+3)+(x+5)+.....+(x+23))=144`
`(2/(1.3)+2/(3.5)+.......+2/(23.25))xx[(x+x+....+x)+(1+3+5+...+23)]=288`
`(1-1/3+1/3-1/5+.....+1/23-1/25)xx(12x+(24.12)/2)=288`
`(1-1/25)xx(12x+12.12)=288`
`24/25xx[12(x+12)]=288`
`24/25xx(x+12)=28`
`x+12=28:24/25=50`
`x=50-12=38`
Vậy `x=38`