mn giup tui vs
a . 6 + a = 420
240 ( a . 3 + a . 5 ) = 2.3
cho tam giac ABC vuong goc tai A , chu vi la 90cm . canh AB bang 4/3 canh AC , canh BC bang 5/3 canh AC . tinh dien tich hinh tam giac ABC? GIUP TUI VOI MN OI
thank mn
giup tui
3+2+5+8=?
tk tui di ; Tui se tk lai
a,5/y=1/2 (tìm y)
b,42/25:y/5=6/5(tìm y)
Giup tui vs
a) \(\dfrac{5}{y}=\dfrac{1}{2}\)
\(y=\dfrac{5\times2}{1}=10\)
b) \(\dfrac{42}{25}:\dfrac{y}{5}=\dfrac{6}{5}\)
\(\dfrac{y}{5}=\dfrac{42}{25}:\dfrac{6}{5}\)
\(\dfrac{y}{5}=\dfrac{7}{5}\)
\(y=7\)
\(\dfrac{5}{y}=\dfrac{1}{2}\\ =>y=5.2:1=10\)
\(\dfrac{42}{25}:\dfrac{y}{5}=\dfrac{6}{5}\\ =>\dfrac{y}{5}=\dfrac{42}{25}:\dfrac{6}{5}=\dfrac{42}{25}.\dfrac{5}{6}=\dfrac{7}{5}\\ =>y=\dfrac{7}{5}.5=7\)
a) \(\dfrac{5}{y}=\dfrac{1}{2}\)
\(\Rightarrow y=5\cdot2:1=10\)
b) \(\dfrac{42}{25}:\dfrac{y}{5}=\dfrac{6}{5}\)
\(\dfrac{y}{5}=\dfrac{42}{25}:\dfrac{6}{5}=\dfrac{7}{5}\)
\(\dfrac{y}{5}=\dfrac{7}{5}\)
\(\Rightarrow y=7\)
Thực hiện phép tính: A=\(\frac{5.\left(2^2.3^2\right)^9.\left(2^2\right)^6-2.\left(2^2.3\right)^{14}.3^4}{5.2^{28}.3^{18}-7.2^{29}.3^{18}}\)
Giúp mk nha mn.
A = -2 nhé ,
gợi ý các bạn chọn (k) đúng cho mình.
Tính A=\(\frac{2^{12}.3^5-4^6.4^2}{\left(2^2.3\right)^6+8^4.8^5}=\frac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^3.14^3}\)
cac ban giup minh nha. minh the neu ai giup minh se like cho nguoi ay 100 luon. the day
BÀI 1 : TÍNH
a,1/2 + -1/3 - -5/4
b,5/4 - 1/2 + -7/8
c,1/5 - 1/2 + 9/10
d,5/4 - 1/3 + 7/6
Lưu ý : trình bày hẳn ra nhé mn đừng ghi mỗi đáp án . Tui đang cần gấp hộ tui nha tui cảm ơn trước
\(a,\dfrac{1}{2}-\dfrac{1}{3}-\left(-\dfrac{5}{4}\right)=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{5}{4}=\dfrac{1\times6-1\times4+5\times3}{12}=\dfrac{6-4+15}{12}=\dfrac{17}{12}\\ b,\dfrac{5}{4}-\dfrac{1}{2}-\dfrac{7}{8}=\dfrac{5\times2-1\times4-7}{8}=\dfrac{10-4-7}{8}=-\dfrac{1}{8}\\ c,\dfrac{1}{5}-\dfrac{1}{2}+\dfrac{9}{10}=\dfrac{1\times2-1\times5+9}{10}=\dfrac{2-5+9}{10}=\dfrac{6}{10}=\dfrac{3}{5}\\ d,\dfrac{5}{4}-\dfrac{1}{3}+\dfrac{7}{6}=\dfrac{5\times3-1\times4+7\times2}{12}=\dfrac{15-4+14}{12}=\dfrac{25}{12}\)
`1/2+(-1/3)-(-5/4)`
`=1/2-1/3+5/4`
`=3/6-2/6+5/4`
`=1/6+5/4`
`=2/12+15/12`
`=17/12`
__
`5/4-1/2+(-7/8)`
`=5/4-1/2-7/8`
`=10/8-4/8-7/8`
`=6/8-7/8`
`=-1/8`
__
`1/5-1/2+9/10`
`=2/10-5/10+9/10`
`=-3/10+9/10`
`=6/10`
`=3/5`
__
`5/4-1/3+7/6`
`=15/12-4/12+14/12`
`=11/12+14/12`
`=25/12`
`#lv`
A) 2.3²+6-4²
B) 8.5²-6.3²+2.(-6)
C) (-26).37+36.43
D) (-85) 36 -85.54
F) 26(37-56)-56(37-26)
E) 130 - { 27-[36+2³.(3+1)²].2}.3
Giúp tui với
A. 2.9 +6 -4 = 20
B. 8.25 - 6.9 + (-12) = 134
C. -962 + 1548 = 586
D. -85.(36+54) = -85 x 100 = -8500
F. 26.37 - 26.56 - 56.37 + 56.26 =26.37 - 56.37 = 37.(26 - 56)
=37. (-30) = -1100
E. 130 - ( 27 - (36 + 128).2))3
= 130 - ( 27 - 328).3
= 130 - (-301).3
= 130 - (-903)
= 1033
mn giup minh voi
A=5+5^2+5^3+....+5^100
a,CS chi a chia 6
b, cs chi a chia 16
c, tim x cn 4A+5=5^x+2
d, 4A +5 co phai la so chinh phuong khong
can gap nha, cam on ban nao da giup minh
Bài1
a)a4+b4≥a3b+ab3 ∀ a,b ∈ R
b)(x-3)(x-4)(x-5)(x-6)+3 >0 ∀ x
mn giải giup mk vs mk đang cần gấp thanks mn nha
Lời giải:
a) Xét hiệu:
\(a^4+b^4-(a^3b+ab^3)\)
\(=(a^4-a^3b)-(ab^3-b^4)\)
\(=a^3(a-b)-b^3(a-b)=(a-b)(a^3-b^3)=(a-b)(a-b)(a^2+ab+b^2)\)
\(=(a-b)^2(a^2+ab+b^2)\)
Ta thấy: \((a-b)^2\geq 0, \forall a,b\in\mathbb{R}\)
\(a^2+ab+b^2=(a+\frac{b}{2})^2+\frac{3b^2}{4}\geq 0, \forall a,b\in\mathbb{R}\)
\(\Rightarrow a^4+b^4-(a^3b+ab^3)=(a-b)^2(a^2+ab+b^2)\geq 0, \forall a,b\in\mathbb{R}\)
\(\Rightarrow a^4+b^4\geq ab^3+a^3b\) với mọi $a,b\in\mathbb{R}$
Ta có đpcm.
Dấu "=" xảy ra khi $a=b$
b)
\((x-3)(x-4)(x-5)(x-6)+3\)
\(=[(x-3)(x-6)][(x-4)(x-5)]+3\)
\(=(x^2-9x+18)(x^2-9x+20)+3\)
\(=a(a+2)+3\) (đặt \(x^2-9x+18=a)\)
\(=a^2+2a+3=(a+1)^2+2\geq 2>0, \forall a\in\mathbb{R}\)
hay \((x-3)(x-4)(x-5)(x-6)+3>0, \forall x\in\mathbb{R}\) (đpcm)
a) Xét hiệu:
a4+b4−(a3b+ab3)a4+b4−(a3b+ab3)
=(a4−a3b)−(ab3−b4)=(a4−a3b)−(ab3−b4)
=a3(a−b)−b3(a−b)=(a−b)(a3−b3)=(a−b)(a−b)(a2+ab+b2)=a3(a−b)−b3(a−b)=(a−b)(a3−b3)=(a−b)(a−b)(a2+ab+b2)
=(a−b)2(a2+ab+b2)=(a−b)2(a2+ab+b2)
Ta thấy: (a−b)2≥0,∀a,b∈R(a−b)2≥0,∀a,b∈R
a2+ab+b2=(a+b2)2+3b24≥0,∀a,b∈Ra2+ab+b2=(a+b2)2+3b24≥0,∀a,b∈R
⇒a4+b4−(a3b+ab3)=(a−b)2(a2+ab+b2)≥0,∀a,b∈R⇒a4+b4−(a3b+ab3)=(a−b)2(a2+ab+b2)≥0,∀a,b∈R
⇒a4+b4≥ab3+a3b⇒a4+b4≥ab3+a3b với mọi a,b∈Ra,b∈R
Ta có đpcm.
Dấu "=" xảy ra khi a=ba=b
b)
(x−3)(x−4)(x−5)(x−6)+3(x−3)(x−4)(x−5)(x−6)+3
=[(x−3)(x−6)][(x−4)(x−5)]+3=[(x−3)(x−6)][(x−4)(x−5)]+3
=(x2−9x+18)(x2−9x+20)+3=(x2−9x+18)(x2−9x+20)+3
=a(a+2)+3=a(a+2)+3 (đặt x2−9x+18=a)x2−9x+18=a)
=a2+2a+3=(a+1)2+2≥2>0,∀a∈R=a2+2a+3=(a+1)2+2≥2>0,∀a∈R
hay (x−3)(x−4)(x−5)(x−6)+3>0,∀x∈R(x−3)(x−4)(x−5)(x−6)+3>0,∀x∈R (đpcm)
a) Xét hiệu:
a4+b4−(a3b+ab3)a4+b4−(a3b+ab3)
=(a4−a3b)−(ab3−b4)=(a4−a3b)−(ab3−b4)
=a3(a−b)−b3(a−b)=(a−b)(a3−b3)=(a−b)(a−b)(a2+ab+b2)=a3(a−b)−b3(a−b)=(a−b)(a3−b3)=(a−b)(a−b)(a2+ab+b2)
=(a−b)2(a2+ab+b2)=(a−b)2(a2+ab+b2)
Ta thấy: (a−b)2≥0,∀a,b∈R(a−b)2≥0,∀a,b∈R
a2+ab+b2=(a+b2)2+3b24≥0,∀a,b∈Ra2+ab+b2=(a+b2)2+3b24≥0,∀a,b∈R
⇒a4+b4−(a3b+ab3)=(a−b)2(a2+ab+b2)≥0,∀a,b∈R⇒a4+b4−(a3b+ab3)=(a−b)2(a2+ab+b2)≥0,∀a,b∈R
⇒a4+b4≥ab3+a3b⇒a4+b4≥ab3+a3b với mọi a,b∈Ra,b∈R
Ta có đpcm.
Dấu "=" xảy ra khi a=ba=b
b)
(x−3)(x−4)(x−5)(x−6)+3(x−3)(x−4)(x−5)(x−6)+3
=[(x−3)(x−6)][(x−4)(x−5)]+3=[(x−3)(x−6)][(x−4)(x−5)]+3
=(x2−9x+18)(x2−9x+20)+3=(x2−9x+18)(x2−9x+20)+3
=a(a+2)+3=a(a+2)+3 (đặt x2−9x+18=a)x2−9x+18=a)
=a2+2a+3=(a+1)2+2≥2>0,∀a∈R=a2+2a+3=(a+1)2+2≥2>0,∀a∈R
hay (x−3)(x−4)(x−5)(x−6)+3>0,∀x∈R(x−3)(x−4)(x−5)(x−6)+3>0,∀x∈R (đpcm)v