Cho tam giác nhọn ABC vuông tại C, CH là đường cao. Lấy E thuộc CH, kẻ BD vuông góc với AE (D thuộc đường thẳng AE). Chứng minh:
a) AE.AD + BA.BH = AB2
b) AE.AD – HA.HB = AH2
Cho tam giác nhọn ABC vuông tại C, CH là đường cao. Lấy E thuộc CH, kẻ BD vuông góc với AE (D thuộc đường thẳng AE). Chứng minh:
a) AE.AD + BA.BH = AB2
b) AE.AD – HA.HB = AH2
Cho tam giác nhọn ABC vuông tại C, CH là đường cao. Lấy E thuộc CH, kẻ BD vuông góc với AE (D thuộc đường thẳng AE). Chứng minh:
a) AE.AD + BA.BH = AB2
b) AE.AD – HA.HB = AH2
Bài 1. Cho tam giác ABC vuông tại C, CH là đường cao. Lấy E thuộc CH, kẻ BD vuông góc với AE (D thuộc AE). Chứng minh:
a) AE.AD + BA.BH = AB2
b) AE.AD – HA.HB = AH2
cho tam giác ABC CH là đường cao(góc C=90 độ). Lấy E thuộc CH kẻ BD vuông góc vs AE(D thuộc AE).CM
a)AE.AD+AB.BH=AB^2
b)AE.AD-AH.HB=AH^2
Không biết thì im mồm và sủa lắm thế
bài 3: Cho tam giác ABC vuông ở C, có góc A bằng 60 độ. Tia phân giác của góc BAC cắt BC ở E. Kẻ EK vuông góc với AB (K thuộc AB). Kẻ BD vuông góc với tia AE (D thuộc AE). Chứng minh:
a) AC=AK
b) AE là đường trung trực của CK
c) EB>AC
d) Ba đường thẳng AC,BD,KE cùng đi qua một điểm
Các bạn chỉ giải câu c,d thôi nha
Cj bổ sung thêm câu c:v
t/g ACE vuông tại C
=> \(\left\{{}\begin{matrix}AE>AC\\AE=EB\end{matrix}\right.\) => EB > AC ( đpcm)
Cho tam giác ABC vuông tại C, có góc A=60 độ, Tia phân giác của góc BAC cắt BC tại E, kẻ EK vuông góc với AB ( K thuộc AB ), kẻ BD vuông góc với AE( D thuộc AE) a, tính góc ABC b, chứng minh tam giac AKE c, AE là đường trung trực của đoạn thẳng Ck d,chứng minh KA bằng KB e, chứng minh tam giác KBE = tam giác DBE
a: \(\widehat{ABC}=30^0\)
b: Xét ΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
\(\widehat{CAE}=\widehat{KAE}\)
Do đó: ΔACE=ΔAKE
c: Ta có: ΔACE=ΔAKE
nên AC=AK; EC=EK
hay AE là đường trung trực của CK
d: Xét ΔEAB có \(\widehat{EBA}=\widehat{EAB}\)
nên ΔEAB cân tại E
mà EK là đường cao
nên K là trung điểm của AB
hay KA=KB
Bài 1:Cho tam giác ABC cân tại A.Trên tia đối của tia BA lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD=CE. Từ D kẻ DM,twf E kẻ EN cùng vuông góc với đường thẳng BC (M,N thuộc đường thẳng BC).Chứng minh:a)DM=EN b)Tam giác ADM bằng tam giác AEN c)Kẻ tia Dx vuông góc với AD tại D,kẻ tia Ey vuông góc với AE tại E, Dx cắt Ey tại P.Chứng minh rằng AP đi qua trung điểm của DE
Cho tam giác nhọn ABC có AB>ACm đường cao AD. Trên đoạn DC lấy điểm E sao cho DB=DE. a) Chứng minh tam giác ABE cân b) Từ E kẻ EF vuông góc với AC(F thuộc AC). Từ C kẻ CK vuông góc với AE(K thuộc AE). Chứng minh ba đường thẳng AD, EF và CK đồng quy.
a: Xét ΔABE có
AD vừa là đường cao, vừa là trung tuyến
=>ΔABE cân tại A
b: Gọi M là giao của AD và FE
Xét ΔAME có
ED,AF là đường cao
ED cắt AF tại C
=>C là trực tâm
=>M,C,K thẳng hàng
=>ĐPCM
Cho tam giác nhọn ABC có AB>ACm đường cao AD. Trên đoạn DC lấy điểm E sao cho DB=DE.
a) Chứng minh tam giác ABE cân
b) Từ E kẻ EF vuông góc với AC(F thuộc AC). Từ C kẻ CK vuông góc với AE(K thuộc AE). Chứng minh ba đường thẳng AD, EF và CK đồng quy.
xét tam giác ABE và tam giác ACF có :
góc AEB = góc AFC = 90 do ...
góc CAB chung
=> tam giác ABE ~ tam giác ACF (g.g)
=> AB/AC = AE/AF
=> AB.AF = AC.AE
a: Xét ΔAEB có
AD vừa là đường cao, vừa là trung tuyến
=>ΔAEB cân tại A
b: Gọi giao của FC và AD là G
Xét ΔAGC có
AF,CD là đường cao
AF cắt CD tại E
=>E là trực tâm
=>GE vuông góc AC
=>G,E,F thẳng hàng
=>AD,EF,CK đồng quy