Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phương Mai
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 3 2021 lúc 23:32

Áp dụng BĐT \(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(a+c-b\right)\)

\(\Leftrightarrow abc\ge\left(3-2a\right)\left(3-2b\right)\left(3-2c\right)\ge0\)

\(\Leftrightarrow9abc+18\left(a+b+c\right)\ge12\left(ab+bc+ca\right)+27\)

\(\Leftrightarrow abc\ge\dfrac{4}{3}\left(ab+bc+ca\right)-3\)

Do đó:

\(P=4a^2+4b^2+4c^2+abc\ge4a^2+4b^2+4c^2+\dfrac{4}{3}\left(ab+bc+ca\right)-3\)

\(P\ge\dfrac{2}{3}\left(a+b+c\right)^2+\dfrac{10}{3}\left(a^2+b^2+c^2\right)-3\)

\(P\ge\dfrac{2}{3}\left(a+b+c\right)^2+\dfrac{10}{9}\left(a+b+c\right)^2-3=13\)

Đề bài bạn viết thiếu số 1 bên vế phải rồi

Akai Haruma
5 tháng 3 2021 lúc 23:30

Lời giải:

Áp dụng BĐT Schur:

$abc\geq (a+b-c)(b+c-a)(c+a-b)=(3-2a)(3-2b)(3-2c)$

$\Leftrightarrow 9abc\geq 12(ab+bc+ac)-27$

$\Leftrightarrow abc\geq \frac{4}{3}(ab+bc+ac)-3$

Do đó:

$4(a^2+b^2+c^2)+abc\geq 4(a^2+b^2+c^2)+\frac{4}{3}(ab+bc+ac)-3$

$=\frac{10}{3}(a^2+b^2+c^2)+\frac{2}{3}(a+b+c)^2-3$

$\geq \frac{10}{9}(a+b+c)^2+\frac{2}{3}(a+b+c)^2-3=13$ (đpcm)

Dấu "=" xảy ra khi $a=b=c=1$

Akai Haruma
5 tháng 3 2021 lúc 23:30

Bài đúng phải là $4a^2+4b^2+4c^2+abc\geq 13$ nhé bạn.

ko tên
Xem chi tiết
ko tên
28 tháng 12 2021 lúc 20:40

vuigiúp mk vs

ILoveMath
28 tháng 12 2021 lúc 20:40

\(a=1+2+2^2+...+2^{2021}\)

\(\Rightarrow2a=2+2^2+2^3+...+2^{2022}\)

\(\Rightarrow2a-a=2+2^2+2^3+...+2^{2022}-1-2-2^2-...-2^{2021}\)

\(\Rightarrow a=2^{2022}-1\)

\(\Rightarrow a=2^{2022}-1=b\)

Minh Hiếu
28 tháng 12 2021 lúc 20:41

\(a=1+2+2^2+2^3+...+2^{2021}\)

\(2a=2+2^2+2^3+2^4...+2^{2021}+2^{2022}\)

\(2a-a=\)\(\left(2+2^2+2^3+2^4...+2^{2021}+2^{2022}\right)-\left(1+2+2^2+2^3+...+2^{2021}\right)\)

\(a=2^{2022}-1\)

⇒ a=b

Hoàng Minh Nguyệt
Xem chi tiết
Hoàng Minh Nguyệt
3 tháng 4 2018 lúc 19:30

Giup mk vs

Nanohana Ami
Xem chi tiết
Trần Trúc Quỳnh
Xem chi tiết
Trang Nguyễn
Xem chi tiết
👁💧👄💧👁
7 tháng 9 2021 lúc 16:04

1) Với x > 0 ta có:

\(x+\dfrac{1}{x}\ge2\\ \Leftrightarrow\dfrac{x^2+1}{x}\ge\dfrac{2x}{x}\\ \Leftrightarrow x^2+1\ge2x\left(\text{vì }x>0\right)\\ \Leftrightarrow x^2-2x+1\ge0\\ \Leftrightarrow\left(x-1\right)^2\ge0\left(\text{luôn đúng }\forall x>0\right)\)

Dấu "=" xảy ra \(\Leftrightarrow x=1\). Vậy BĐT được chứng mình với x > 0.

Nguyễn Lê Phước Thịnh
7 tháng 9 2021 lúc 16:04

1: Áp dụng Bđt cosi, ta được:

\(x+\dfrac{1}{x}\ge2\cdot\sqrt{x\cdot\dfrac{1}{x}}=2\)

👁💧👄💧👁
7 tháng 9 2021 lúc 16:07

2a) 

Có \(abcd=1\Rightarrow ab=\dfrac{1}{cd}\)

Áp dụng BĐT vừa chứng mình ở bài 1, ta có:

\(cd+\dfrac{1}{cd}\ge2\Leftrightarrow ab+cd\ge2\)

Dấu "=" xảy ra \(\Leftrightarrow cd=1\)

Vậy BĐT được chứng minh với a,b,c,d > 0 thỏa mãn abcd = 1.

 

Tào Thị Thanh Tâm
Xem chi tiết
vu tien dat
21 tháng 3 2020 lúc 21:14

Do a là bội của b nên a = kb (\(k\in Z^∗\)) (1)

Mặt khác b cũng là bội của a nên b = k'a (\(k'\in Z^∗\)) (2)

Thế (2) vào (1) được a = kk'a hay kk' = 1

Do \(k,k'\in Z^∗\) nên \(k=k'=\pm1\)

Thế vào (1) và (2) ta được a = b hoặc a = -b, đây là đpcm

Khách vãng lai đã xóa
Đỗ Quỳnh Chi
Xem chi tiết
Trần Thúy Hường
Xem chi tiết