Cho a,b>0 và 9b(b-a)=4a2 . Tính a-b/a+b
giúp mk vs mk cần gấp
Cho a,b,c>0 và a+b+c=3. Chứng minh rằng:
4a2+4b2+4c2+abc ≥ 3
giúp mk với ạ, mk cần gấp
Áp dụng BĐT \(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(a+c-b\right)\)
\(\Leftrightarrow abc\ge\left(3-2a\right)\left(3-2b\right)\left(3-2c\right)\ge0\)
\(\Leftrightarrow9abc+18\left(a+b+c\right)\ge12\left(ab+bc+ca\right)+27\)
\(\Leftrightarrow abc\ge\dfrac{4}{3}\left(ab+bc+ca\right)-3\)
Do đó:
\(P=4a^2+4b^2+4c^2+abc\ge4a^2+4b^2+4c^2+\dfrac{4}{3}\left(ab+bc+ca\right)-3\)
\(P\ge\dfrac{2}{3}\left(a+b+c\right)^2+\dfrac{10}{3}\left(a^2+b^2+c^2\right)-3\)
\(P\ge\dfrac{2}{3}\left(a+b+c\right)^2+\dfrac{10}{9}\left(a+b+c\right)^2-3=13\)
Đề bài bạn viết thiếu số 1 bên vế phải rồi
Lời giải:
Áp dụng BĐT Schur:
$abc\geq (a+b-c)(b+c-a)(c+a-b)=(3-2a)(3-2b)(3-2c)$
$\Leftrightarrow 9abc\geq 12(ab+bc+ac)-27$
$\Leftrightarrow abc\geq \frac{4}{3}(ab+bc+ac)-3$
Do đó:
$4(a^2+b^2+c^2)+abc\geq 4(a^2+b^2+c^2)+\frac{4}{3}(ab+bc+ac)-3$
$=\frac{10}{3}(a^2+b^2+c^2)+\frac{2}{3}(a+b+c)^2-3$
$\geq \frac{10}{9}(a+b+c)^2+\frac{2}{3}(a+b+c)^2-3=13$ (đpcm)
Dấu "=" xảy ra khi $a=b=c=1$
Bài đúng phải là $4a^2+4b^2+4c^2+abc\geq 13$ nhé bạn.
a=1+2+2^2+2^3+....+2^2021 và b=2^2022-1
so sánh a vs b
giúp mk vs
\(a=1+2+2^2+...+2^{2021}\)
\(\Rightarrow2a=2+2^2+2^3+...+2^{2022}\)
\(\Rightarrow2a-a=2+2^2+2^3+...+2^{2022}-1-2-2^2-...-2^{2021}\)
\(\Rightarrow a=2^{2022}-1\)
\(\Rightarrow a=2^{2022}-1=b\)
\(a=1+2+2^2+2^3+...+2^{2021}\)
\(2a=2+2^2+2^3+2^4...+2^{2021}+2^{2022}\)
\(2a-a=\)\(\left(2+2^2+2^3+2^4...+2^{2021}+2^{2022}\right)-\left(1+2+2^2+2^3+...+2^{2021}\right)\)
\(a=2^{2022}-1\)
⇒ a=b
Cho 3 số a,b,c là 3 số thực khác 0 , thỏa mãn:
a+b-c/c= b+c-a /a =c+a-b/b và a+b+c khác 0
Hãy tính giá trị biểu thức: B=(1+b/a) . (1+a/c) . (1+c/b)
giúp mk vs mk đg cần gấp
Giúp mk vs, mk cần gấp bài này.
Tìm số nguyên a, b biết : a > 0 và a.(b - 2) = 3
Nếu 0<a<b<c<d<e<f và (a-b)(c-d)(e-f)x = (b-a)(c-d)(e-f) thì x =
hộ mk vs...mk cần gấp
1) cho \(x>0\). CMR: \(x+\dfrac{1}{x}\ge2\)
2) cho a, b, c, d>0. thỏa mãn \(a.b.c.d=1\). CM:
a) \(ab+cd\ge2\)
b) \(a^2+b^2+c^2+d^2\ge4\)
giúp mk vs ạ mk cần gấp
1) Với x > 0 ta có:
\(x+\dfrac{1}{x}\ge2\\ \Leftrightarrow\dfrac{x^2+1}{x}\ge\dfrac{2x}{x}\\ \Leftrightarrow x^2+1\ge2x\left(\text{vì }x>0\right)\\ \Leftrightarrow x^2-2x+1\ge0\\ \Leftrightarrow\left(x-1\right)^2\ge0\left(\text{luôn đúng }\forall x>0\right)\)
Dấu "=" xảy ra \(\Leftrightarrow x=1\). Vậy BĐT được chứng mình với x > 0.
1: Áp dụng Bđt cosi, ta được:
\(x+\dfrac{1}{x}\ge2\cdot\sqrt{x\cdot\dfrac{1}{x}}=2\)
2a)
Có \(abcd=1\Rightarrow ab=\dfrac{1}{cd}\)
Áp dụng BĐT vừa chứng mình ở bài 1, ta có:
\(cd+\dfrac{1}{cd}\ge2\Leftrightarrow ab+cd\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow cd=1\)
Vậy BĐT được chứng minh với a,b,c,d > 0 thỏa mãn abcd = 1.
Chứng minh rằng nếu 2 số a, b là 2 số nguyên khác 0 và a là bội của b, b là bội của a thì a = b hoặc a= -b
giúp mk vs nhé mk đang cần gấp lắm ak
Do a là bội của b nên a = kb (\(k\in Z^∗\)) (1)
Mặt khác b cũng là bội của a nên b = k'a (\(k'\in Z^∗\)) (2)
Thế (2) vào (1) được a = kk'a hay kk' = 1
Do \(k,k'\in Z^∗\) nên \(k=k'=\pm1\)
Thế vào (1) và (2) ta được a = b hoặc a = -b, đây là đpcm
Cho các số a,b,c thỏa mãn a+ab+b=3;b+BC+c=8 và c+ca+a= 15 . Tính giá trị biểu thức M =a+b+c
Help me please
MN giúp mk vs , cần gấp lắm
Ai đúng mk tick cho
cho a,b, c là số thực khác 0 và a+b+c khác 0 sao cho a+b+c/c =a-b+c/b=-a+b+c/a. Tính giá trị biểu thức M=(a+b)(b+c)(c+a)/abc
nếu đc giúp mk làm theo cách dãy tỉ số bằng nhau nhé giúp mk nhé mk cần gấp để nộp mong các bạn giúp mk .
Cảm ơn nhiều ạ <3