Tính gía trị của A khi a=1,b=-1,c=-2
1)Cho hàm số y=3x-1 . Lập bảng giá trị tương ứng của y khi x=-1;-1/2 ; 1/2 ; 1 ; 3/2 2) a) Vẽ đồ thị hàm y = 1/2x b) Tính gía trị của x khi y = -1 ; 2 ; -0.5
1)Cho hàm số y=3x-1 . Lập bảng giá trị tương ứng của y khi x=-1;-1/2 ; 1/2 ; 1 ; 3/2 2) a) Vẽ đồ thị hàm y = 1/2x b) Tính gía trị của x khi y = -1 ; 2 ; -0.5
1)Cho hàm số y=3x-1 . Lập bảng giá trị tương ứng của y khi x=-1;-1/2 ; 1/2 ; 1 ; 3/2 2) a) Vẽ đồ thị hàm y = 1/2x b) Tính gía trị của x khi y = -1 ; 2 ; -0.5
1)Cho hàm số y=3x-1 . Lập bảng giá trị tương ứng của y khi x=-1;-1/2 ; 1/2 ; 1 ; 3/2 2) a) Vẽ đồ thị hàm y = 1/2x b) Tính gía trị của x khi y = -1 ; 2 ; -0.5 ban giup minh voi
3 giờ trước (11:31)
1)Cho hàm số y=3x-1 . Lập bảng giá trị tương ứng của y khi x=-1;-1/2 ; 1/2 ; 1 ; 3/2 2) a) Vẽ đồ thị hàm y = 1/2x b) Tính gía trị của x khi y = -1 ; 2 ; -0.5
cho hàm số y = f(x) = 5 - 3x
a, tính f(-1) , f(0)
b, lập bang tính trị tương ứng của y khi x = -2 ,3
c, tính gía trị của x khi y = -4 , y = 0
ai làm nhanh mik tick nha
Bài 1: Thực hiện phép tính;
a) (a+b-c)2-(b-c)2-2a.(b-c)
Bài2: Gía trị của mỗi đa thức sau có phụ thuộc vào giá trị của biến ko:
a) P= (x+2)3+(x-2)3-2x.(x2+12) ?
Bài 2:
a: Ta có: \(P=\left(x+2\right)^3+\left(x-2\right)^3-2x\left(x^2+12\right)\)
\(=x^3+6x^2+12x+8+x^3-6x^2+12x-8-2x^3-24x\)
=0
Bài 1:
a: Ta có: \(\left(a+b-c\right)^2-\left(b-c\right)^2-2a\left(b-c\right)\)
\(=\left(a+b-c-b+c\right)\left(a+b-c+b-c\right)-2a\left(b-c\right)\)
\(=a\cdot\left(a+2b-2c\right)-a\left(2b-2c\right)\)
\(=a\left(a+2b-2c-2b+2c\right)\)
\(=a^2\)
A=\(\frac{\sqrt{y}-5}{\sqrt{y}+3}\)
a. tính gía trị A tại y=\(\frac{1}{4}\)
b. tính gía trị y tại A=-1
c. tìm giá trị của y để A nhận giá trị nguyên
Tính gía trị của biểu thức :
A = a(b+ c ) - b ( a + c ) + c ( a - b ) với a- b =1000vaf c = 1
\(A=a\left(b+c\right)-b\left(a+c\right)+c\left(a+b\right).\)
\(=a\left(b+1\right)-b\left(a+1\right)+1\cdot1000.\)
\(=ab+a-ab-b+1000.\)
\(=a-b+1000\)
\(=1000+1000=2000\)
1. Cho a, b, c, d thỏa mãn: abcd=1.
Tính gía trị biểu thức:
M= \(\dfrac{a}{abc+ab+a+1}+\dfrac{b}{bcd+bc+b+1}+\dfrac{c}{cda+cd+1}+\dfrac{d}{dab+da+d+1}\)
2. Cho các số a, b, c, d thỏa mãn: 0 ≤a, b, c, d ≤1.
Tìm giá trị lớn nhất của biểu thức:
N\(=\dfrac{a}{bcd+1}+\dfrac{b}{cda+1}+\dfrac{c}{dab+1}+\dfrac{d}{abc+1}\)
3. Cho tam giác ABC nhọn có các đường cao AM, BN, CP cắt nhau tại H.
a) Chứng minh: \(AB.BP+AC.CN=BC^2\)
b) Cho B, C cố định A thay đổi. Tìm vị trí điểm A để: MH,MA đạt max ?
c) Gọi S,S1,S2,S3 lần luợt là diện tích các tam giác ABC, APN, BMP, CMN.
Chứng minh: \(S_1.S_2.S_3\) ≤ \(\dfrac{1}{64}S_3\)
Bài 1: Ta có:
\(M=\frac{ad}{abcd+abd+ad+d}+\frac{bad}{bcd.ad+bc.ad+bad+ad}+\frac{c.abd}{cda.abd+cd.abd+cabd+abd}+\frac{d}{dab+da+d+1}\)
\(=\frac{ad}{1+abd+ad+d}+\frac{bad}{d+1+bad+ad}+\frac{1}{ad+d+1+abd}+\frac{d}{dab+da+d+1}\)
$=\frac{ad+abd+1+d}{ad+abd+1+d}=1$
Bài 2:
Vì $a,b,c,d\in [0;1]$ nên
\(N\leq \frac{a}{abcd+1}+\frac{b}{abcd+1}+\frac{c}{abcd+1}+\frac{d}{abcd+1}=\frac{a+b+c+d}{abcd+1}\)
Ta cũng có:
$(a-1)(b-1)\geq 0\Rightarrow a+b\leq ab+1$
Tương tự:
$c+d\leq cd+1$
$(ab-1)(cd-1)\geq 0\Rightarrow ab+cd\leq abcd+1$
Cộng 3 BĐT trên lại và thu gọn thì $a+b+c+d\leq abcd+3$
$\Rightarrow N\leq \frac{abcd+3}{abcd+1}=\frac{3(abcd+1)-2abcd}{abcd+1}$
$=3-\frac{2abcd}{abcd+1}\leq 3$
Vậy $N_{\max}=3$
3.
Hình vẽ:
Lời giải:
a) △AMC và △BNC có: \(\widehat{AMC}=\widehat{BNC}=90^0;\widehat{ACB}\) là góc chung.
\(\Rightarrow\)△AMC∼△BNC (g-g).
\(\Rightarrow\dfrac{AC}{BC}=\dfrac{CM}{CN}\Rightarrow AC.CN=BC.CM\left(1\right)\)
b) △AMB và △CPB có: \(\widehat{AMB}=\widehat{CPB}=90^0;\widehat{ABC}\) là góc chung.
\(\Rightarrow\)△AMB∼△CPB (g-g)
\(\Rightarrow\dfrac{AB}{CB}=\dfrac{BM}{BP}\Rightarrow AB.BP=BC.BM\left(2\right)\)
Từ (1) và (2) suy ra:
\(AC.CN+AB.BP=BC.CM+BC.BM=BC.\left(CM+BM\right)=BC.BC=BC^2\left(đpcm\right)\)b) Gọi \(M_0\) là trung điểm BC, giả sử \(AB< AC\).
\(\widehat{HBM}=90^0-\widehat{BHM}=90^0-\widehat{AHN}=\widehat{CAM}\)
△HBM và △CAM có: \(\widehat{HBM}=\widehat{CAM};\widehat{HMB}=\widehat{CMA}=90^0\)
\(\Rightarrow\)△HBM∼△CAM (g-g)
\(\Rightarrow\dfrac{MH}{CM}=\dfrac{BM}{MA}\Rightarrow MH.MA=BM.CM\)
Ta có: \(BM.CM=\left(BM_0-MM_0\right)\left(CM_0+MM_0\right)=\left(BM_0-MM_0\right)\left(BM_0+MM_0\right)=BM_0^2-MM_0^2\le BM_0^2=\dfrac{BC^2}{4}\)
\(\Rightarrow MH.MA\le\dfrac{BC^2}{4}\).
Vì \(BC\) không đổi nên: \(max\left(MH.MA\right)=\dfrac{BC^2}{4}\), đạt được khi △ABC cân tại A hay A nằm trên đường trung trực của BC.
c) Sửa đề: \(S_1.S_2.S_3\le\dfrac{1}{64}.S^3\)
△AMC∼△BNC \(\Rightarrow\dfrac{AC}{BC}=\dfrac{MC}{NC}\Rightarrow\dfrac{AC}{MC}=\dfrac{BC}{NC}\)
△ABC và △MNC có: \(\dfrac{AC}{MC}=\dfrac{BC}{NC};\widehat{ACB}\) là góc chung.
\(\Rightarrow\)△ABC∼△MNC (c-g-c)
\(\Rightarrow\dfrac{S_{MNC}}{S_{ABC}}=\dfrac{S_1}{S}=\dfrac{MC}{AC}.\dfrac{NC}{BC}\left(1\right)\)
Tương tự:
△ABC∼△MBP \(\Rightarrow\dfrac{S_{MBP}}{S_{ABC}}=\dfrac{S_2}{S}=\dfrac{MB}{AB}.\dfrac{BP}{BC}\left(2\right)\)
△ABC∼△ANP \(\Rightarrow\dfrac{S_{ANP}}{S_{ABC}}=\dfrac{S_3}{S}=\dfrac{AN}{AB}.\dfrac{AP}{AC}\left(3\right)\)
Từ (1), (2), (3) suy ra:
\(\dfrac{S_1}{S}.\dfrac{S_2}{S}.\dfrac{S_3}{S}=\left(\dfrac{MC}{AC}.\dfrac{NC}{BC}\right).\left(\dfrac{MB}{AB}.\dfrac{BP}{BC}\right).\left(\dfrac{AN}{AB}.\dfrac{AP}{AC}\right)\)
\(\Rightarrow\dfrac{S_1}{S}.\dfrac{S_2}{S}.\dfrac{S_3}{S}=\left(\dfrac{MC.MB}{AC.AB}\right).\left(\dfrac{BP.AP}{AC.BC}\right).\left(\dfrac{AN.CN}{AB.BC}\right)\) (*)
Áp dụng câu b) ta có:
\(\left\{{}\begin{matrix}BM.CM\le\dfrac{1}{4}BC^2\\AP.BP\le\dfrac{1}{4}AB^2\\AN.CN\le\dfrac{1}{4}AC^2\end{matrix}\right.\)
Từ (*) suy ra:
\(\dfrac{S_1}{S}.\dfrac{S_2}{S}.\dfrac{S_3}{S}\le\left(\dfrac{\dfrac{1}{4}BC^2}{AC.AB}\right).\left(\dfrac{\dfrac{1}{4}AC^2}{AC.BC}\right).\left(\dfrac{\dfrac{1}{4}AB^2}{AB.BC}\right)=\dfrac{1}{64}\)
\(\Rightarrow S_1.S_2.S_3\le\dfrac{1}{64}.S^3\)
Dấu "=" xảy ra khi △ABC đều.