Tính giá trị của biểu thức C=2x2019-5y3+2019 tại x,y thỏa mãn :
|2x-y|+(y+2)2018=0.
Cho các số x,y thuộc tập n thỏa mãn (x + y - 3)^ 2018 + 2018x (2x - 4)^2020 = 0
Tính giá trị của biểu thức S = (x -1)^2019 +( 2 - y)^2019 = 2018
Nhận xét : ( x + y - 3 )^2018 >=0 và 2018.(2x-4)^2020 >= 0
=> (x+y-3)^2018 + 2018.(2x-4)^2020 >=0
Dấu = xảy ra khi : x + y - 3 = 0 và 2x - 4 = 0 => x = 2 và y = 1
Thay vào bt S :
S = ( 2 - 1)^2019 + (2-1)^2019
= 1^2019 + 1^2019 = 2
Cho x, y, z thuộc Q thỏa mãn:
x2 + 2y +1= 0
y2 + 2z +1 =0
z2 + 2x +1 =0
Tính giá trị biểu thức: x2017 + y2018 + z2019
ta có x2+2y+1+y2+2z+1+z2+2x+1=0
=>(x2+2x+1)+(y2+2y+1)+(z2+2z+1)=0
=>(x+1)2+(y+1)2+(z+1)2=0
Vì (x+1)2> hoặc = 0
.......
=> x=-1,y=-1,z=-1
sau đó thay vào nha
cho các số x,y thỏa mãn đẳng thức \(3x^2+3y^2+4xy+2x-2y+2=0\\ \)
tính giá trị biểu thức M=\(\left(x+y\right)^{2016}+\left(x+2\right)^{2017}+\left(y-1\right)^{2018}\)
Ta có: \(3x^2+3y^2+4xy+2x-2y+2=0\)
\(\Leftrightarrow x^2+2x+1+y^2-2y+1+2x^2+4xy+2y^2=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x^2+2xy+y^2\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2=0\)
Ta có: \(\left(x+1\right)^2\ge0\forall x\)
\(\left(y-1\right)^2\ge0\forall y\)
\(2\left(x+y\right)^2\ge0\forall x,y\)
Do đó: \(\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2\ge0\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}x+1=0\\y-1=0\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\\-1+1=0\left(đúng\right)\end{matrix}\right.\)
Thay x=-1 và y=1 vào biểu thức \(M=\left(x+y\right)^{2016}+\left(x+2\right)^{2017}+\left(y-1\right)^{2018}\), ta được:
\(M=\left(-1+1\right)^{2016}+\left(-1+2\right)^{2017}+\left(1-1\right)^{2018}\)
\(=0^{2016}+1^{2017}+0^{2018}=1\)
Vậy: M=1
Cho các số thực dương x,y thỏa mãn log 9 x = log 12 y = log 16 x + y . Tính giá trị của biểu thức S = log 4 x 1 + 5 y + log 8 x 1 + 5 y + log 16 x 1 + 5 y 3 + .... + log 2 2018 x 1 + 5 y 2017
A. S = 2018 2017 .
B. S = 1 2017 .
C. S = 2017 2018 .
D. S = 1 2018 .
Cho các số thực dương x,y thỏa mãn log 9 x = log 12 y = log 16 x + y . Tính giá trị của biểu thức S = log 4 x 1 + 5 y + log 8 x 1 + 5 y + log 16 x 1 + 5 y 3 + .... + log 2 2018 x 1 + 5 y 2017
A. S = 2018 2017 .
B. S = 1 2017 .
C. S = 2017 2018 .
D. S = 1 2018 .
Đáp án C
Đặt
log 9 x = log 12 y = log 16 x + y = t ⇒ x = 9 t y = 12 t x + y = 16 t ⇒ 9 t + 12 t = 16 t
⇔ 3 t 2 + 3 t .4 t − 4 t 2 = 0 *
Chia cả hai vế của phương trình (*) cho 4 t 2 ta được:
3 t 4 t 2 + 3 t 4 t − 1 = 0 ⇔ 3 t 4 t = 5 − 1 2 3 t 4 t = − 5 − 1 2 L ⇒ x y = 3 t 4 t = 5 − 1 2
Ta có:
S = log 4 x 1 + 5 y + log 8 x 1 + 5 y + log 16 x 1 + 5 y 3 + ... + log 2 2018 x 1 + 5 y 2017
= log 2 2 x 1 + 5 y + log 2 3 x 1 + 5 y 1 2 + log 2 4 x 1 + 5 y 1 3 + ... + log 2 2018 x 1 + 5 y 1 2017
= 1 1.2 log 2 x 1 + 5 y + 1 2.3 log 2 x 1 + 5 y + 1 3.4 log 2 x 1 + 5 y + ... + 1 2017.2018 log 2 x 1 + 5 y
= ( 1 − 1 2 + 1 2 − 1 3 + 1 3 − 1 4 + ... + 1 2017 − 1 2018 ) . log 2 x 1 + 5 y
= 1 − 1 2018 . log 2 x 1 + 5 y = 2017 2018 . log 2 5 − 1 5 + 1 2 = 2017 2018
Cho x, y là các số dương thỏa mãn: \(x^3+8y^3-6xy+1=0\)
Tính giá trị của biểu thức: \(x^{2018}+\left(y-\frac{1}{2}\right)^{2019}\)
Áp dụng BĐT Cô si ta có:
\(x^3+8y^3+1\ge3\sqrt[3]{x^3\cdot8y^3\cdot1}=6xy\)
\(\Rightarrow x^3+8y^3+1-6xy\ge0\)
Dấu "=" xảy ra tại \(x=2y=1\Rightarrow x=1;y=\frac{1}{2}\)
Khi đó:
\(A=x^{2018}+\left(y-\frac{1}{2}\right)^{2019}=1^{2018}+0^{2019}=1\)
1/Cho a,b,c thỏa mãn \(\frac{2}{\left(x^2+1\right)\left(x-1\right)}=\frac{ax+b}{x^2+1}+\frac{c}{x-1}\)
Tính giá trị biểu thức M=\(\frac{a^{2017}+b^{2018}+c^{2019}}{a^{2017}b^{2018}c^{2019}}\)
2/Cho x,y,z≠0 và x+y+z=2008
Tính giá trị biểu thức P=\(\frac{x^3}{\left(x-y\right)\left(x-z\right)}+\frac{y^3}{\left(y-x\right)\left(y-z\right)}+\frac{z^3}{\left(z-y\right)\left(z-x\right)}\)
Tính giá trị biểu thức C = 2x5 - 5y3 + 2015 tại x, y thỏa mãn |x - 1| + (y + 2)20 = 0
Ta có:
\(\left|x-1\right|+\left(y+2\right)^{20}=0\)
\(\Rightarrow\left|x-1\right|=0\) và \(\left(y+2\right)^{20}=0\)
+) \(\left|x-1\right|=0\Rightarrow x-1=0\Rightarrow x=1\)
+) \(\left(y+2\right)^{20}=0\Rightarrow y+2=0\Rightarrow y=-2\)
\(\Rightarrow C=2x^5-5y^3+2015\)
\(=2.1^5-5.\left(-2\right)^3+2015\)
\(=2-\left(-40\right)+2015\)
\(=2057\)
Vậy C = 2057
Cho các số x,y thỏa mãn điều kiện:
\(x^2-2xy+6y^2-12x+2y+41=0\)
Tính giá trị của biểu thức: A=\(\dfrac{2020-2019\left(9-x-y\right)^{2019}-\left(x-6y\right)^{2010}}{y^{2010}}\)