Tìm giá trị của x nếu \(x=\sqrt{8+\sqrt{8+\sqrt{8+...}}}\) (làm tròn đến chữ số thập phân thứ nhất)
bằng quy tắc nhân tìm giá trị gần đúng nghiệm của các phương trình sau, làm tròn đến chữ số thập phân thứ ba
-5x=1+\(\sqrt{5}\)
\(x\sqrt[]{2}=4\sqrt[]{3}\)
Bằng quy tắc nhân, tìm giá trị gần đúng nghiệm của các phương trình sau, làm tròn đến chữ số thập phân thứ ba ( dùng máy tính bỏ túi để tính toán)
a) \(2x=\sqrt{13}\)
b) \(-5x=1+\sqrt{5}\)
c) \(x\sqrt{2}=4\sqrt{3}\)
a) Chia cả 2 vế cho 2 ta được : \(x=\dfrac{\sqrt{13}}{2}\approx1,803\)
b) Chia cả 2 vế cho -5 ta được : \(x=\dfrac{1+\sqrt{5}}{-5}\approx-0,647\)
c) Chia cả 2 vế cho \(\sqrt{2}\) ta được: \(x=\dfrac{4\sqrt{3}}{\sqrt{2}}\approx4,889\)
a)2x=\(\sqrt{13}\)
<=>x=\(\dfrac{\sqrt{13}}{2}\)
<=>x=1,803
b, -5x = 1 + \(\sqrt{5}\)
<=>x=\(\dfrac{1+\sqrt{5}}{-5}\)
<=>x= -0,647
Sử dụng máy tính cầm tay, tìm tập các giá trị x thoả mãn:x^2=8 Làm tròn đến chữ số thập phân thứ 2 Giúp mình với nè mọi người ơi
\(\left[{}\begin{matrix}x=2\sqrt{2}\simeq2.82\\x=-2\sqrt{2}\simeq-2.82\end{matrix}\right.\)
1. Cho PT sau, tính x theo a, b (a,b > 0):
\(\sqrt{a+b\sqrt{x}}=2+\sqrt{a-b\sqrt{x}}\)
Áp dụng khi a = 2015, b = 2016 (làm tròn đến số thập phân thứ 5).
2. Giải PT:
\(729x^2+8\sqrt{1-x^2}=36\)
Sử dụng máy tính cầm tay làm tròn các số sau đến chữ số thập phân thứ nhất:
\(a = \sqrt 2 ;b = \sqrt 5 \)
Tính tổng hai số thập phân nhận được.
Ta có: a = 1,414…; b = 2,236
Làm tròn đến chữ số thập phân thứ nhất, ta được: \(a \approx 1,4;b \approx 2,2\)
Tổng 2 số thập phân nhận được là: 1,4 + 2,2 = 3,6
Bài 24 (trang 15 SGK Toán 9 Tập 1)
Rút gọn và tìm giá trị (làm tròn đến chữ số thập phân thứ ba) của các căn thức sau:
a) $\sqrt{4(1+6x+9x^2)^2}$ tại $x=−\sqrt{2}$ ;
b) $\sqrt{9a^2(b^2+4−4b)}$ tại $a=−2;b=−\sqrt{3}$.
a) Ta có:
√4(1+6x+9x2)24(1+6x+9x2)2 =√4.√(1+6x+9x2)2=4.(1+6x+9x2)2
=√4.√(1+2.3x+32.x2)2=4.(1+2.3x+32.x2)2
=√22.√[12+2.3x+(3x)2]2=22.[12+2.3x+(3x)2]2
=2.√[(1+3x)2]2=2.[(1+3x)2]2
=2.∣∣(1+3x)2∣∣=2.|(1+3x)2|
=2(1+3x)2=2(1+3x)2.
(Vì (1+3x)2>0(1+3x)2>0 với mọi xx nên ∣∣(1+3x)2∣∣=(1+3x)2|(1+3x)2|=(1+3x)2)
Thay x=−√2x=−2 vào biểu thức rút gọn trên, ta được:
2[1+3.(−√2)]2=2(1−3√2)22[1+3.(−2)]2=2(1−32)2.
Bấm máy tính, ta được: 2(1−3√2)2≈21,0292(1−32)2≈21,029.
b) Ta có:
√9a2(b2+4−4b)=√32.a2.(b2−4b+4)9a2(b2+4−4b)=32.a2.(b2−4b+4)
=√(3a)2.(b2−2.b.2+22)=(3a)2.(b2−2.b.2+22)
=√(3a)2.√(b−2)2=(3a)2.(b−2)2
=|3a|.|b−2|=|3a|.|b−2|
Thay a=−2a=−2 và b=−√3b=−3 vào biểu thức rút gọn trên, ta được:
|3.(−2)|.∣∣−√3−2∣∣=|−6|.∣∣−(√3+2)∣∣|3.(−2)|.|−3−2|=|−6|.|−(3+2)|
=6.(√3+2)=6√3+12=6.(3+2)=63+12.
Bấm máy tính, ta được: 6√3+12≈22,39263+12≈22,392.
a) Ta có:
.
(Vì với mọi nên )
Thay vào biểu thức rút gọn trên, ta được:
.
Bấm máy tính, ta được: .
b) Ta có:
Thay và vào biểu thức rút gọn trên, ta được:
.
Bấm máy tính, ta được: .
a) x = 21 , 029
b) x = 22 , 392
Tính giá trị gần đúng đến chữ số chữ số ở phần thập phân:
\(A=\sqrt{2+\sqrt[3]{3+\sqrt[4]{4+\sqrt[5]{5+\sqrt[6]{6+\sqrt[7]{7+\sqrt[8]{8+\sqrt[9]{9}}}}}}}}\)
Các bạn làm ơn trình bày giống như trình bày toán casio nhé mình chỉ mới học thôi chưa hết cách trình bày 1 bay giải casio như thế nào cả
??????????????????????????????????????
??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
Cho 3 số thực dương x,y,z thoả mãn : \(x^2+y^2+z^2=48\) Tìm giá trị lớn nhất của biểu thức:
A=\(\sqrt{x^3+8}+\sqrt{x^3+8}+\sqrt{z^3+8}\)
Chắc bạn ghi nhầm căn thức thứ 2
\(A2\sqrt{2}=2\sqrt{\left(2x+4\right)\left(x^2-2x+4\right)}+2\sqrt{\left(2y+4\right)\left(y^2-2y+4\right)}+2\sqrt{\left(2z+4\right)\left(z^2-2z+4\right)}\)
\(A2\sqrt{2}\le2x+4+x^2-2x+4+2y+4+y^2-2y+4+2z+4+z^2-2z+4\)
\(A2\sqrt{2}\le x^2+y^2+z^2+24=72\)
\(A\le18\sqrt{2}\)
Dấu "=" xảy ra khi \(x=y=z=4\)