Cho ΔABC có số đo các góc A, B, C lần lượt tỉ lệ với 3; 2; 1
a. Tính số đo các góc của ΔABC
b. Lấy D là trung điểm của AC, kẻ DM ⊥⊥ AC ( M ∈∈ BC ). Chứng minh rằng ∆ABM là tam giác đều
tam giác ABC có số đo các góc là góc A , góc B , góc C lần lượt tỉ lệ với 1;2;3 . Tính số đo các góc của ΔABC.
Lời giải:
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{3}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{1+2+3}=\frac{180^0}{6}=30^0\) (định lý tổng 3 góc trong tam giác)
\(\Rightarrow \widehat{A}=30^0; \widehat{B}=2.30^0=60^0; \widehat{C}=3.30^0=90^0\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}=\dfrac{a+b+c}{1+2+3}=\dfrac{180}{6}=30\)
Do đó: a=30; b=60; c=90
Cho tam giác ABC có số đo các góc A, B, C lần lượt tỉ lệ với 2; 3; 4. Tính góc B
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a+b+c}{2+3+4}=\dfrac{180}{9}=20\)
Do đó: b=60
\(\text{Gọi x;y;z lần lượt là góc 1,góc 2,góc 3:}\)
\(\text{ (đk:x;y;z>0,đơn vị:độ)}\)
\(\text{Ta có:}\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\text{ và }x+y+z=180^0\)
\(\text{Áp dụng tính chất dãy tỉ số bằng nhau:}\)
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{180}{9}=20\)
\(\Rightarrow x=20.2=40^0\)
\(y=20.3=60^0\)
\(z=20.4=80^0\)
\(\text{Vậy số đo góc B là:}60^0\)
tam giác ABC có số đo các góc A,B,C lần lượt tỉ lệ với 3:4:5.tính số đo các góc
Cho tam giác ABC có số đo các góc A,góc B,góc C lần lượt tỉ lệ nghịch với 1/2, 1/3, 2/5. Tính số đo góc A, góc B, góc C.
Cho tam giác ABC có số đo các góc A, B, C lần lượt tỉ lệ với 2; 3; 4.
a) Lập tỉ lệ thức biểu diễn mối liên hệ giữa số đo ba góc của tam giác ABC.
b) Tính số đo mỗi góc của tam giác.
`a,` Gọi số đo `3` góc của Tam giác `ABC` lần lượt là `x,y,z (x,y,z \ne 0)`
Tỉ lệ thức biểu diễn mối quan hệ giữa số đo `3` góc trong Tam giác `ABC` là `x/2=y/3=z/4`
`b,` Tổng số đo `3` góc trong `1` tam giác là `180^0`
`-> x+y+z=180`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/2=y/3=z/4=(x+y+z)/(2+3+4)=180/9=20`
`-> x/2=y/3=z/4=20`
`->x=20*2=40, y=20*3=60, z=20*4=80`
Vậy, số đo của `3` góc trong Tam giác `ABC` lần lượt là `40^0, 60^0, 80^0.`
a:
Đặt \(a=\widehat{A};b=\widehat{B};c=\widehat{C}\)
a/2=b/3=c/4
b: a/2=b/3=c/4=(a+b+c)/(2+3+4)=180/9=20
=>a=40; b=60; c=80
Tam giác ABC có số đo các góc A;B;C lần lượt tỉ lệ với 1; 2; 3.Tính số đo các góc của
tam giác ABC.
-tổng 3 góc của 1 tam giác=180
-gọi ^A,^B,^C lần lượt là x,y,z
-áp dụng tính chất dãy tỉ số bằng nhau:
x/1=y/2=z/3=x+y+z/1+2+3=180/6=30
suy ra:x/1=30 suy ra x=30
suy ra:y/2=30 suy ra y=60
suy ra:z/3=30 suy ra z=90
suy ra ^A=30o;^B=60o;^C=90o
Theo bài toán ta có:
\(\dfrac{A}{1}\)\(=\)\(\dfrac{B}{2}\)\(=\)\(\dfrac{C}{3}\) và A\(+\)B\(+\)C\(=\)180°(vì tổng ba góc của một tam giác bằng 180°)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{A}{1}\)\(+\)\(\dfrac{B}{2}\)\(+\)\(\dfrac{C}{2}\)\(=\dfrac{A+B+C}{1+2+3}\)\(=\)\(\dfrac{180}{6}\)\(=\)30°
\(\Rightarrow\)\(\dfrac{A}{1}\)\(=\)30°. 1\(=\) 30°
\(\dfrac{B}{2}\)\(=\) 30°. 2\(=\) 60°
\(\dfrac{C}{3}\)\(=\)30°. 3\(=\)90°
Vậy số đo của ba góc A, B, C lần lượt là 30°, 60° và 90°
tam giác abc có số đo các góc a,b,c lần lượt tỉ lệ với 3, 5, 7.tính só đo các góc
theo dãy tỉ số bằng nhau:
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b+c}{3+5+7}=\frac{180}{15}=12\)
=> a=12.3=360
=> b=12.5=600
=> c=12.7=840
áp dụng t/c của dãy tỉ số bằng nhau ta được :\(\frac{a}{3}\)= \(\frac{b}{5}\)=\(\frac{c}{7}\)=\(\frac{a+b+c}{3+5+7}\)=\(\frac{180}{15}\)=12
\(\Rightarrow\frac{a}{3}=12\Rightarrow a=12.3=36\)
\(\Rightarrow\frac{b}{5}=12\Rightarrow b=12.5=60\)
\(\Rightarrow\frac{c}{7}=12\Rightarrow c=12.7=84\)
Theo bài ra ta cs : \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\)và \(a+b+c=180\)
ADTC dãy tỉ số bằng nhau ta cs
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{a+b+c}{3+5+7}=\frac{180}{15}=12\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{3}=12\\\frac{b}{5}=12\\\frac{c}{7}=12\end{cases}\Rightarrow\hept{\begin{cases}a=12.3=36\\b=12.5=60\\c=12.7=84\end{cases}}}\)
Cho tam giác ABC có số đo các góc A, B ,C lần lượt tỉ lệ nghịch với 1/2, 1/3, 2/5. Tính số đo các góc
Cho ΔABC có các đường cao xuất phát từ đỉnh A,B,C có độ dài lần lượt tỉ lệ với 12,15,20
a)Hỏi các cạnh của ΔABC tỉ lệ với số nào ???
b)ΔABC là tam giác gì ?? Vì sao ?