Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Anh Thư
Xem chi tiết
Nguyễn Quốc
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 10 2021 lúc 20:17

a: AB=15(cm)

AC=20(cm)

BH=9(cm)
CH=16(cm)

Trương Tùng Dương
Xem chi tiết
xiloxilao
19 tháng 1 2019 lúc 15:25

Hình tự vẽ nha!

a)tam giác ABC có M là trung điểm của BC(gt)

=>AM là trung tuyến(đ/n)

=>AM cx là đường cao(t/c) =>AM vuông góc với BC hay góc ABM=90 độ

Mặt khác: m là trung điểm của Bc,mà BC=12cm

=>BM=CM=1/2BC=1/2.12=6(cm)

Tam giác vuông ABM(cmt)có: AB=10cm(gt) ,BM=6cm(cmt)

Áp dụng định lí Pi-ta-go vào tam giác vuông ABM, ta có:

AM2+BM2=AB2

=>AM2+62=102       =>AM2=64

=>AM2=82      =>AM=8(CM)

Anh Vũ
Xem chi tiết
Hoàng Thế Phúc
26 tháng 10 2016 lúc 21:51

Trong 1 tam giác vuông đường trung tuyến ứng với cạnh huyền =nửa ch

=> AM=BM=MC=15cm =>BC=30cm

lại có AH là đường cao va=12cm

=> S tam giác ABC là :(30x12):2=180cm^2

Anh Vũ
26 tháng 10 2016 lúc 22:11

cảm ơn

senorita
Xem chi tiết
Nguyễn Tuấn
Xem chi tiết
Vũ Nguyễn
19 tháng 12 2018 lúc 23:50

a)Xét tứ giác ADME có:

\(\widehat{DAE}=\widehat{MDA}=\widehat{MEA}=90^0\)(gt)

=>ADME là hcn(Tứ giác có 3 góc vuông là hcn)

b)Có ADME là hcn(câu a)

=>ADME là h vuông 

<=>AM là p/g của góc  \(\widehat{DAE}\)(1)

mà \(\widehat{DAE}\)là \(\widehat{BAC}\)(2)

Từ (1);(2)

=>AM là p/g của \(\widehat{BAC}\)

mà AM là đường trung tuyến (gt)

=> \(\Delta ABC\)cân tại A

Vậy ADME là h vuông khi \(\Delta ABC\)cân tại A

Nguyễn Anh Thư
Xem chi tiết
Phù Hân
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 5 2022 lúc 21:30

a: Xét ΔABM và ΔACM có

AB=AC
AM chung

BM=CM

Do đó: ΔABM=ΔACM

b: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

c: BM=CM=BC/2=8(cm)

nên AM=6(cm)

Minh
13 tháng 5 2022 lúc 21:32

tham khảo

a: Xét ΔABM và ΔACM có

AB=AC
AM chung

BM=CM

Do đó: ΔABM=ΔACM

b: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

c: BM=CM=BC/2=8(cm)

nên AM=6(cm)

pourquoi:)
13 tháng 5 2022 lúc 21:37

a, Ta có :

AB = AC (gt)

=> Δ ABC cân tại A

Xét Δ ABM và Δ ACM, có :

AB = AC (gt)

MB = MC (M là trung điểm BC)

\(\widehat{ABM}=\widehat{ACM}\) (Δ ABC cân tại A)

=> Δ ABM = Δ ACM

b, Ta có :

AM là đường trung tuyến

Δ ABC cân tại A

=> AM ⊥ BC

c, Ta có :

BC = 2MB

=> 16 = 2MB

=> MB = 8 (cm)

Xét Δ AMB vuông tại M, có :

\(AB^2=AM^2+BM^2\)

=> \(10^2=AM^2+8^2\)

=> \(AM^2=36\)

=> AM = 6 (cm)

Thanh Bình
Xem chi tiết
Nguyễn Hoàng Minh
20 tháng 11 2021 lúc 8:15

\(a,BC=\sqrt{AB^2+AC^2}=13\left(cm\right)\\ HTL:\left\{{}\begin{matrix}AH=\dfrac{AB\cdot AC}{BC}=\dfrac{60}{13}\left(cm\right)\\BH=\dfrac{AB^2}{BC}=\dfrac{25}{13}\left(cm\right)\end{matrix}\right.\\ b,AM=\dfrac{1}{2}BC=\dfrac{13}{2}\left(cm\right)\left(trung.tuyến.ứng.cạnh.huyền\right)\\ \Rightarrow HM=\sqrt{AM^2-AH^2}=\dfrac{119}{26}\left(cm\right)\\ \Rightarrow S_{AHM}=\dfrac{1}{2}AH\cdot HM=\dfrac{1}{2}\cdot\dfrac{60}{13}\cdot\dfrac{119}{26}=\dfrac{1785}{169}\left(cm^2\right)\)