tam giác abc có hc= 12cm ,bc=15cm trung tuyến AM=10cm:
a)tính diện tích ABC
b)tính các góc B,A,C
cho tam giác ABC, các đường trung tuyến BD và CE. cho biết BC = 10cm, BD =9cm, CE = 12cm
a) chứng minh BD vuông góc với CE
b) tính diện tích tam giác ABC
Cho tam giác ABC vuông tại A (AB < AC) có đường cao AH, AH = 12cm, BC = 25cm. a) Tìm độ dài các đoạn BH, CH, AB và AC. b) Vẽ trung tuyến AM. Tìm số đo của góc AMH. c) Tính diện tích tam giác AHM
a: AB=15(cm)
AC=20(cm)
BH=9(cm)
CH=16(cm)
Cho tam giác ABC cân tại A, AB=10cm, BC= 12cm. M là trung điểm của BC.
a, Tính AM
b, Kẻ BH vuông góc AC. Tính HA, HC
Hình tự vẽ nha!
a)tam giác ABC có M là trung điểm của BC(gt)
=>AM là trung tuyến(đ/n)
=>AM cx là đường cao(t/c) =>AM vuông góc với BC hay góc ABM=90 độ
Mặt khác: m là trung điểm của Bc,mà BC=12cm
=>BM=CM=1/2BC=1/2.12=6(cm)
Tam giác vuông ABM(cmt)có: AB=10cm(gt) ,BM=6cm(cmt)
Áp dụng định lí Pi-ta-go vào tam giác vuông ABM, ta có:
AM2+BM2=AB2
=>AM2+62=102 =>AM2=64
=>AM2=82 =>AM=8(CM)
Cho tam giác ABC vuông tại A, đường cao AH=12cm và đường trung tuyến AM=15cm. Tính diện tích tam giác ABC.
Trong 1 tam giác vuông đường trung tuyến ứng với cạnh huyền =nửa ch
=> AM=BM=MC=15cm =>BC=30cm
lại có AH là đường cao va=12cm
=> S tam giác ABC là :(30x12):2=180cm^2
1. Cho tam giác ABC có góc B=45 độ, góc C=30 độ , BM là đường trung tuyến của tam giác ABC. Tính số đo góc AMB
2. Cho tam giác ABC có AB=6cm, AC=10cm, độ dài đường trung tuyến AM=4cm. Tính diện tích tam giác ABC
Cho tam giác ABC vuông tại A có AB = 10cm, AC = 12cm, trung tuyến AM. Kẻ MD vuông góc với AB và ME vuông góc với AC.
a) C/m tứ giác ADME là hình gì ? Vì sao ?
b) Tìm điều kiện của tam giác ABC để tứ giác ADME là hình vuông
c) Tính diện tích tam giác ABM
a)Xét tứ giác ADME có:
\(\widehat{DAE}=\widehat{MDA}=\widehat{MEA}=90^0\)(gt)
=>ADME là hcn(Tứ giác có 3 góc vuông là hcn)
b)Có ADME là hcn(câu a)
=>ADME là h vuông
<=>AM là p/g của góc \(\widehat{DAE}\)(1)
mà \(\widehat{DAE}\)là \(\widehat{BAC}\)(2)
Từ (1);(2)
=>AM là p/g của \(\widehat{BAC}\)
mà AM là đường trung tuyến (gt)
=> \(\Delta ABC\)cân tại A
Vậy ADME là h vuông khi \(\Delta ABC\)cân tại A
Cho tam giác ABC vuông tại A, AB < AC, đường cao AH. AH=12cm, BC=25cm
a) Tính BH, CH, AB và AC
b) Vẽ trung tuyến AM. Tính góc AMH
c) Tính diện tích tam giác AMH
Cho tam giác ABC có AB=AC=10cm; BC=16cm. Trung tuyến AM. Chứng Minh rằng : A) Tam giác ABM= Tam giác AC B) AM vuông góc BC C) Tính độ dài AM
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
c: BM=CM=BC/2=8(cm)
nên AM=6(cm)
tham khảo
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
c: BM=CM=BC/2=8(cm)
nên AM=6(cm)
a, Ta có :
AB = AC (gt)
=> Δ ABC cân tại A
Xét Δ ABM và Δ ACM, có :
AB = AC (gt)
MB = MC (M là trung điểm BC)
\(\widehat{ABM}=\widehat{ACM}\) (Δ ABC cân tại A)
=> Δ ABM = Δ ACM
b, Ta có :
AM là đường trung tuyến
Δ ABC cân tại A
=> AM ⊥ BC
c, Ta có :
BC = 2MB
=> 16 = 2MB
=> MB = 8 (cm)
Xét Δ AMB vuông tại M, có :
\(AB^2=AM^2+BM^2\)
=> \(10^2=AM^2+8^2\)
=> \(AM^2=36\)
=> AM = 6 (cm)
Cho tam giác ABC vuông tại A, AB = 5cm, AC = 12cm, đường cao AH. a) Tính BC, BH, AH. b) Gọi AM là đường trung tuyến của tam giác ABC, tính diện tích tam giác AHM
\(a,BC=\sqrt{AB^2+AC^2}=13\left(cm\right)\\ HTL:\left\{{}\begin{matrix}AH=\dfrac{AB\cdot AC}{BC}=\dfrac{60}{13}\left(cm\right)\\BH=\dfrac{AB^2}{BC}=\dfrac{25}{13}\left(cm\right)\end{matrix}\right.\\ b,AM=\dfrac{1}{2}BC=\dfrac{13}{2}\left(cm\right)\left(trung.tuyến.ứng.cạnh.huyền\right)\\ \Rightarrow HM=\sqrt{AM^2-AH^2}=\dfrac{119}{26}\left(cm\right)\\ \Rightarrow S_{AHM}=\dfrac{1}{2}AH\cdot HM=\dfrac{1}{2}\cdot\dfrac{60}{13}\cdot\dfrac{119}{26}=\dfrac{1785}{169}\left(cm^2\right)\)