Chứng minh
\(a^3+b^3+c^3\ge3abc\) với \(\forall a,b,c\ge0\)
Giúp với mn ưi
Chứng minh rằng :
\(a^3+b^3+c^3\ge3abc\)với a,b,c > 0
CMR:a3+b3+c3\(\ge\)3abc với a,b,c>0
+)Áp dụng bất đẳng thức Cô-Si của ba số nguyên dương ta có:
a3+b3+c3\(\ge\)\(\sqrt[3^3]{a^3b^3c^3}\)
Mà \(\sqrt[3^3]{a^3b^3c^3}\)=3abc
=>a3+b3+c3\(\ge\)3abc
Bất đẳng thức xảy ra khi a=b=c(ĐPCM)
Chúc bn học tốt
C1 : Áp dụng BĐT Cô si cho ba số dương \(a^3,b^3,c^3\) ta được :
\(a^3+b^3+c^3\ge3\sqrt[3]{a^3.b^3.c^3}=3abc\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
C2 : ta xét hiệu : \(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\) (1)
Ta thấy \(\left(1\right)\ge0\) \(\Rightarrow a^3+b^3+c^3\ge3abc\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
\(a^3+b^3+c^3\ge3abc\Leftrightarrow a^3+b^3+c^3-3abc\ge0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\ge0\)
\(\Leftrightarrow\frac{1}{2}\left(a+b+c\right)+\left(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right)\ge0\)(luôn đúng với a,b,c >0)
Vậy bất đẳng thức được chứng minh, nếu bạn không hiểu chỗ nào thì nhắn tin nhắn riêng hỏi mk nhé, bài mk cam kết 100% đúng)
chứng minh các bất đẳng thức sau:
a) \(\frac{a^4}{b}+\frac{b^4}{c}+\frac{c^4}{a}\ge3abc,\left(\forall a,b,c>0\right)\)
b) \(\left(\frac{a+b+c+d}{4}\right)^4\ge abcd,\left(\forall a,b,c,d\ge0\right)\)
c) \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c},\left(\forall a,b,c>0\right)\)
d) \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge6,\left(\forall a,b,c>0\right)\)
Cho \(a+b+c\ge0\) CMR : \(a^3+b^3+c^3\ge3abc\)
a3+b3+c3 - 3abc >= 0
<=>(a+b+c)(a2+b2+c2-ab-bc-ca) >= 0
bn tự c/m ngoặc thứ 2 >= 0 (nhân 2 vào),có a+b+c >= 0 ->đpcm
CMR \(a^3+b^3\ge ab\left(a+b\right)\forall a,b\ge0\)
Áp dụng kết quả trên cmr: \(\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{c^3+a^3+1}\le1\)
Với điều kiện \(\left\{{}\begin{matrix}\forall a,b\ge0\\abc=1\end{matrix}\right.\)
\(a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)
\(\frac{1}{a^3+b^3+1}\le\frac{1}{ab\left(a+b\right)+1}=\frac{abc}{ab\left(a+b\right)+abc}=\frac{abc}{ab\left(a+b+c\right)}=\frac{c}{a+b+c}\)
Tương tự \(\frac{1}{b^3+c^3+1}\le\frac{a}{a+b+c}\); \(\frac{1}{a^3+c^3+1}\le\frac{b}{a+b+c}\)
Cộng vế với vế:
\(\sum\frac{1}{a^3+b^3+1}\le\frac{a+b+c}{a+b+c}=1\)(đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
Cho \(a,b,c\ge0;a^2+b^2+c^2+abc\le4.\) Chứng minh rằng$:$
\(a+b+c\ge3abc\)
\(Cho:a,b,c\ge0.CMR:a^3+b^3+c^3\ge3abc\)
Áp dụng bđt cô si dạng engel cho 3 số dương:
\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)
Vậy đẳng thức chỉ xảy ra khi a = b = c
Chúc bạn học tốt!
Câu hỏi của Pé Ken - Toán lớp 8 - Học toán với OnlineMath tham khảo
bạn làm cách khác dc ko? mik k bt lm bdt cô si
Chứng minh rằng
\(a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\)
với\(\forall a,b,c\ge0\)
Áp dụng hệ quả BĐT Cauchy cho 2 số thực dương ta có
(ab)^2 +(bc)^2 >=2 ab.bc
(bc)^2+(ca)^2 >= 2bc.ca
(ca)^2+(ab)^2 >= 2ca.ab
=> 2(a^2b^2+b^2c^2+c^2a^2)>=2abc(a+b+c)
<=> a^2b^2+b^2c^2+c^2a^2 >= abc(a+b+c)
Dấu = xảy ra <=> ab=bc=ca <=>a=b=c
Áp dụng bất đẳng thức cosi cho lần lượt 3 số không âm là a,b,c ta có :
\(a^2b^2+b^2c^2\ge2b^2ac\)
\(b^2c^2+c^2a^2\ge2c^2ab\)
\(a^2b^2+c^2a^2\ge2a^2bc\)
Cộng lần lượt 3 vế của các bđt trên ta có :
\(2\left(a^2b^2+b^2c^2+c^2a^2\right)\ge2abc\left(a+b+c\right)\)
\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2\ge abc\left(a+b+c\right)\)
ĐPCM
Dấu "=" khi a=b=c
Ta có BĐT sau \(x^2+y^2+z^2\ge xy+yz+zx\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)
Áp dụng vào thì
\(a^2b^2+b^2c^2+c^2a^2\ge ab^2c+bC^2a+ca^2b\)
\(=abc\left(a+b+c\right)\)
Phù ....... 10 phút đồng hồ đánh đt :((((
Cho a, b, c > 0. Chứng minh:\(a^3+b^3+c^3\ge3abc+\frac{3}{4}\left(a+b+c\right)\left(a-b\right)^2\)
Ta thử nha :)) Có gì sai thì chỉ bảo nhé :
BĐT cần chứng minh \(\Leftrightarrow a^3+b^3+c^3-3abc-\frac{3}{4}\left(a+b+c\right)\left(a-b\right)^2\ge0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)-\frac{3}{4}\left(a+b+c\right)\left(a^2-2ab+b^2\right)\ge0\)
\(\Leftrightarrow\left(a+b+c\right)\left(4a^2+4b^2+4c^2-4ab-4bc-4ca-3a^2+6ab-3b^2\ge\right)0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2+4c\left(c-b-a\right)\right]\ge0\) ( luôn đúng với a,b,c > 0 ?? )
Vậy ta có điều phải chứng minh ?
Xin phép làm lại nha :))
Ta có BĐT cần chứng minh \(\Leftrightarrow a^3+b^3+c^3-3abc-\frac{3}{4}\left(a+b+c\right)\left(a-b\right)^2\ge0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)-\frac{3}{4}\left(a+b+c\right)\left(a^2-2ab+b^2\right)\ge0\)
\(\Leftrightarrow\left(a+b+c\right)\left(4a^2+4b^2+4c^2-4ab-4ca-4bc-3a^2-3b^2+6ab\ge\right)0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a+b-2c\right)^2\ge0\) ( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
Vậy ta có điều phải chứng minh .
Chứng minh rằng: \(a^3+b^3+c^3\ge3abc\)
\(giải:\)
\(a^3\)\(+b^3\)\(+c^3\)\(\ge3abc\)
\(\Rightarrow a^3\)\(+b^3\)\(+c^3\)\(-3abc\ge0\)
\(\Rightarrow a^3\)\(+b^3\)\(+c^3\)\(-3abc+3a^2b+3ab^2-3a^2b-3ab^2\ge0\)
\(\Rightarrow\left(a^3+3a^2b+3ab^2+b^3\right)+c^3-\left(3abc+3a^2b+3ab^2\right)\ge0\)
\(\Rightarrow\left(a+b\right)^3+c^3-3ab\left(c+a+b\right)\ge0\)
\(\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\ge0\)
\(\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2-3ab\right]\ge0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\ge0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\ge0\)
\(\Rightarrow\frac{1}{2}\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2ac-2bc\right)\ge0\)
\(\Rightarrow\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\right]\ge0\)(luôn đúng \(\forall\)a,b,c\(\ge0\))
hay \(a^3+b^3+c^3\ge3abc\left(đpcm\right)\)