C1 : Áp dụng BĐT Cô - si cho 3 số không âm ta được :
\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
C2 : Sử dụng biến đổi tương đương :
Ta có :\(a^3+b^3+c^3\ge3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc\ge0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\ge0\) ( luôn đúng )
Do đó có : \(a^3+b^3+c^3\ge3abc\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
Xét hiệu \(a^3+b^3+c^3-3abc\) ta có:
\(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)^3-3\left(a+b\right).c.\left(a+b+c\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left[\left(a+b+c\right)^2-3\left(a+b\right).c-3ab\right]\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab+2bc+2ac-3ac-3bc-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)
\(=\frac{1}{2}\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2bc-2ac\right)\)
\(=\frac{1}{2}\left(a+b+c\right)\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)\right]\)
\(=\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]\)
Vì \(a,b,c\ge0\)\(\Rightarrow a+b+c\ge0\)
mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\forall a,b,c\)
\(\Rightarrow\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]\ge0\)
hay \(a^3+b^3+c^3-3abc\ge0\)\(\Rightarrow a^3+b^3+c^3\ge3abc\)
Dấu " = " xảy ra \(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a=b=c=0\\a=b=c\end{cases}}\)\(\Leftrightarrow a=b=c\ge0\)