Cho Δ vuông cân tại A. Trên tia đối của tia BA lấy điểm E sao cho BE=BC.
a, Tính số đo các góc của Δ AEC
b, Trên tia đối của tia BC lấy điểm F sao cho BF=BC. Tính số đo các góc của Δ CEF.
Cho tam giác ABC vuông cân tại A . Trên tia đối của tia BA lấy điểm E sao cho BE=BC. a) Tính số đo các góc của AEC b) Trên tia đối của tia BC lấy điểm F sao cho BF=BC . Tính số đo các góc của CEF
Cho tam giác ABC vuông tại A. Trên tia đối của tia BA lấy điểm E sao cho BE=BC.
a, Tính số đo các góc của tam giác AEC
b, Trên tia đối của tia BC lấy điểm F sao cho BF=BC. Tính số đo các góc của số đo CEF.
Cho tam giác ABC vuông cân tại A . Trên tia đối của tia BA lấy điểm E sao cho BE=BC.
a) Tính số đo các góc của AEC
b) Trên tia đối của tia BC lấy điểm F sao cho BF=BC . Tính số đo các tam giác CEF
giúp mình đi !!! Nhanh lên giúp mình
a: \(\widehat{CBE}=180^0-45^0=135^0\)
\(\Leftrightarrow\widehat{BEC}=\widehat{BCE}=\dfrac{180^0-135^0}{2}=22.5^0\)
\(\Leftrightarrow\widehat{ECA}=180^0-22.5^0-90^0=67.5^0\)
b: Xét ΔECF có
EB là đường trung tuyến
EB=CF/2
Do đó: ΔECF vuông tại E
nên \(\widehat{FEC}=90^0\)
hay \(\widehat{CFE}=67.5^0\)
Cho tam giác ABC vuông cân tại A . Trên tia đối của tia BA lấy điểm E sao cho BE=BC.
a) Tính số đo các góc của AEC
b) Trên tia đối của tia BC lấy điểm F sao cho BF=BC . Tính số đo các tam giác CEF
giúp mình đi !!! Nhanh lên giúp mình Vẽ hình luôn nha
b: \(\widehat{CBE}=180^0-45^0=135^0\)
\(\Leftrightarrow\widehat{BCE}=\dfrac{180^0-135^0}{2}=22.5^0\)
hay \(\widehat{CFE}=67.5^0\)
a: \(\widehat{AEC}=\dfrac{180^0-135^0}{2}=22.5^0\)
Bài 2: Cho tam giác ABC vuông cân tại A . Trên tia đối của tia BA lấy điểm E sao cho
a) Tính số đo các góc của
b) Trên tia đối của tia BC lấy điểm F sao cho BF=BC . Tính số đo các góc của DCEF
Cho tam giác ABC cân tại A. Trên tia đối của tia BA lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD = CE. Vẽ DH và EK cùng vuông góc với đường thẳng BC. Chứng minh.
a, HB = CK. b, Góc AHK = góc AKC. c, HK//DE d, Δ AHE = Δ AKD.
( Vẽ hình giúp mk luôn nh )
a: Xét ΔDBH vuông tại H và ΔECK vuông tại K có
DB=CE
góc DBH=góc ECK
=>ΔDBH=ΔECK
=>HB=CK
b: Xet ΔABH và ΔACK có
AB=AC
góc ABH=góc ACK
BH=CK
=>ΔABH=ΔACK
=>góc AHB=góc AKC
c: Xét ΔADE có AB/BD=AC/CE
nên BC//DE
=>HK//ED
d: Xét ΔAHE và ΔAKD có
AH=AK
HE=KD
AE=AD
=>ΔAHE=ΔAKD
Bài 5: Cho tam giác ABC vuông cân tại A. Trên tia đối của tia BA lấy điểm D sao cho DB = BC. Tính số đo các góc của tam giác ACD
Bài6:TamgiácABCcântạiBcóBˆ =100 đôn.LấycácđiểmDvàEtrêncạnhAC sao cho AD = BA, CE = CB. Tính số đo góc DBE?
Bài 7: Cho tam giác ABC cân tại A. Vẽ BH vuông góc với AC tại H. Chứng minh rằng góc BAC có số đo gấp đôi số đo góc CBH.
Bài 8: Cho tam giác ABC cân tại A. Trên tia đối của tia BA lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD = CE. Gọi I là giao điểm của BE và CD.
a) Chứng minh tam giác IBC và tam giác IDE là các tam giác cân.
b) Chứng minh BC // DE.
c) Gọi M là trung điểm của BC. Chứng minh ba điểm A, M, I thẳng hàng.
Bài 5:
Tgiac ABC vuông cân tại A => góc CBA = 45 độ
Xét góc CBA là góc ngoài tgiac DBC => góc CBA = góc D + DCB
Xét tgiac DBC có DB = BC => tgiac DBC cân tại B => góc D = góc DBC
=> góc D = 45/2 = 22,5 độ
và góc ACD = 22,5 + 45 = 67,5 độ
Vậy số đo các góc của tgiac ACD là ...
Bài 6:
Tgiac ABC cân tại B, góc B = 100 độ => góc A = góc C = 40 độ
Xét tgiac ABD có AB = AD => tgiac ABD cân tại A => góc EDB (ADB) = (180-40)/2 =70 độ
cmtt với tgiac CBE => góc DEB = 70 độ
=> góc DBE = 180-70-70 = 40 độ
Bài 7:
Xét tgiac ABC cân tại A => góc BAC = 180 - 2.góc C => 2.(90 - góc C)
Xét tgiac BHC vuông tại H => góc CBH = 90 - góc C
=> đpcm
Bài 8: mai làm hihi
bài này dễ sao không biết
Bài 8 :
Tự vẽ hình nhé ?
a) Vì ∆ABC cân tại A (GT)
=> ∠ABC = ∠ACB (ĐN)
Mà ∠ABC + ∠DBC = 180o (2 góc kề bù)
∠ACB + ∠ECB = 180o (2 góc kề bù)
=> ∠DBC = ∠ECB (1)
Xét ∆BCD và ∆CBE có :
BD = CE (GT)
∠DBC = ∠ECB (Theo (1))
BC chung
=> ∆BCD = ∆CBE (c.g.c) (2)
=> ∠BCD = ∠CBE (2 góc tương ứng)
Hay ∠BCI = ∠CBI
Xét ∆IBC có : ∠BCI = ∠CBI (cmt)
=> ∆IBC cân tại I (định lý)
=> IB = IC (ĐN) (3)
Từ (2) => DC = EB (2 cạnh tương ứng)
Mà ID + IC = DC, IE + IB = EB
=> ID = IE
Xét ∆IDE có : ID = IE (cmt)
=> ∆IDE cân tại I (ĐN)
b) Ta có : AB + BD = AD
Mà AC + CE = AE
AB = AC (GT)
BD = CE (GT)
=> AD = AE
Xét ∆ADE có : AD = AE (cmt)
=> ∆ADE cân tại A (ĐN)
=> ∠ADE = \(\frac{180^o-\widehat{DAE}}{2}\)(4)
Vì ∆ABC cân tại A (GT)
=> ∠ABC = \(\frac{180^o-\widehat{BAC}}{2}\)(5)
Từ (4), (5) => ∠ADE = ∠ABC, mà 2 góc này ở vị trí đồng vị
=> BC // DE (DHNB)
c) Xét ∆ABM và ∆ACM có :
AM chung
AB = AC (GT)
MB = MC (do M là trung điểm của BC)
=> ∆ABM = ∆ACM (c.c.c)
=> ∠AMB = ∠AMC (2 góc tương ứng)
Mà ∠AMB + ∠AMC = 180o (2 góc kề bù)
=> ∠AMB = ∠AMC = 180o : 2 = 90o
Sau đó chứng minh ∆BIM = ∆CIM theo c.c.c bằng 3 yếu tố MI chung, MB = MC, IB = IC (Theo (3))
Rồi => ∠IMB = ∠IMC (tương ứng)
Mà ∠IMB + ∠IMC = 180o (kề bù)
=> ..... (làm như phần trên)
Ta có : ∠AMB + ∠IMB = ∠AMI
Mà ∠AMB = 90o (cmt)
∠IMB = 90o (cmt)
=> 90o + 90o = ∠AMI
=> ∠AMI = 180o
=> A, M, I thẳng hàng (đpcm)
Vậy .....
Cho Δ ABC, lấy điểm D thuộc cạnh BC ( D không trùng với B,C). Gọi M là trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME= MB, trên tia đối của tia MC lấy điểm F sao cho MF= MC. Chứng minh rằng:
a) Δ AME = Δ DMB; AE // BC
b) Ba điểm E, A, F thẳng hàng
c) BF // CE
a) Xét ΔABD và ΔEBD có
BA=BE(gt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔABD=ΔEBD(c-g-c)
b) Ta có: ΔABD=ΔEBD(cmt)
nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)
mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)
nên \(\widehat{BED}=90^0\)