Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
NGUYỄN AN PHONG
Xem chi tiết
Cuồng Song Joong Ki
Xem chi tiết
Nguyễn Linh Chi
21 tháng 10 2019 lúc 0:13

3. Câu hỏi của Hoàng Đức Thịnh - Toán lớp 8 - Học toán với OnlineMath

Khách vãng lai đã xóa
dinh huong
Xem chi tiết
Nguyễn Hoàng Minh
10 tháng 8 2021 lúc 16:15

undefined

ghdoes
Xem chi tiết
problems No
Xem chi tiết
Huynh nhu thanh thu
Xem chi tiết
Luffy mũ rơm
17 tháng 7 2016 lúc 15:46

3a+3b=ab

=> ab-3a-3b=0

=> a(b-3)-3(b-3)=9

=>(b-3).(a-3)=9

lập bảng nhé ngọc 

 

tranvantinh
Xem chi tiết
tranvantinh
3 tháng 1 2023 lúc 18:34

Lời giải:

Đặt ⎧⎪⎨⎪⎩3a+b−c=x3b+c−a=y3c+a−b=z{3a+b−c=x3b+c−a=y3c+a−b=z

Khi đó, điều kiện đb tương đương với:

(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24

⇔3(2a+4b)(2b+4c)(2c+4a)=24⇔3(2a+4b)(2b+4c)(2c+4a)=24

⇔(a+2b)(b+2c)(c+2a)=1⇔(a+2b)(b+2c)(c+2a)=1

Do đó ta có đpcm

Dat Nguyen tuan
3 tháng 1 2023 lúc 18:36

Lời giải:

Đặt ⎧⎪⎨⎪⎩3a+b−c=x3b+c−a=y3c+a−b=z{3a+b−c=x3b+c−a=y3c+a−b=z

Khi đó, điều kiện đb tương đương với:

(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24

⇔3(2a+4b)(2b+4c)(2c+4a)=24⇔3(2a+4b)(2b+4c)(2c+4a)=24

⇔(a+2b)(b+2c)(c+2a)=1⇔(a+2b)(b+2c)(c+2a)=1

Do đó ta có đpcm

doraemon
Xem chi tiết
Phạm Thị Kim Ngân
7 tháng 5 2022 lúc 19:10

???????????????loằng ngoằng quá. Tui không hỉu cái GTNN

doraemon
8 tháng 5 2022 lúc 18:37

GTNN là tắt của giá trị nhỏ nhất, 

Trong bài này bạn biến đổi sao cho biểu thức \(P\ge a\)   (số a là số biết trước) 

VD: Bạn đưa về dạng nào đó của biểu thức mà nó luôn lớn hơn hoặc bằng \(\dfrac{1}{3}\) Bạn có thể viết \(P\ge\dfrac{1}{3}\) thì GTNN của \(P=\dfrac{1}{3}\)  hay \(minP=\dfrac{1}{3}\)

Tìm được GTNN rồi thì bạn tìm ẩn để dấu "=" xảy ra, nghĩa là để BĐT xảy ra dấu =, lúc đó biểu thức P đạt giá trị nhỏ nhất,

 VD như: \(minP=\dfrac{1}{3}\) <=> Dấu = xảy ra

                                  <=> x = b (x là ẩn và b là biết trước)

Ở một số bài có thể cho điều kiện của ẩn.

Ngọc Ngô
Xem chi tiết
Nguyễn Đại Nghĩa
12 tháng 4 2018 lúc 11:23

\(Ta có:&nbsp;\(\frac{1}{2a+3b+3c}=\frac{1}{\left(a+b\right)+\left(a+c\right)+2\left(b+c\right)}\) Theo Cauchy:&nbsp;\(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\) =>&nbsp;\(\frac{1}{2a+3b+3c}\le\frac{1}{4}\left(\frac{1}{\left(a+b\right)+\left(a+c\right)}+\frac{1}{2\left(b+c\right)}\right)\le\frac{1}{4}\left(\frac{1} {4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)+\frac{1}{2\left(b+c\right)}\right)\) =>&nbsp;\(\frac{1}{2a+3b+3c}\le\frac{1}{8}\left(\frac{1}{2\left(a+b\right)}+\frac{1}{2\left(a+c\right)}+\frac{1}{b+c}\right)\) Tương tự:&nbsp;\(\frac{1}{3a+2b+3c}\le\frac{1}{8}\left(\frac{1}{2\left(a+b\right)}+\frac{1}{2\left(b+c\right)}+\frac{1}{a+c}\right)\) Và:&nbsp;\(\frac{1}{3a+3b+2c}\le\frac{1}{8}\left(\frac{1}{2\left(a+c\right)}+\frac{1}{2\left(b+c\right)}+\frac{1}{a+b}\right)\) =>&nbsp;\(P\le\frac{1}{8}\left(\frac{2}{a+b}+\frac{2}{a+c}+\frac{2}{b+c}\right)=\frac{1}{4}.2017\) => Pmax &nbsp;= 2017:4=504,25\)

Bùi Thế Hào
11 tháng 4 2018 lúc 11:52

Ta có: \(\frac{1}{2a+3b+3c}=\frac{1}{\left(a+b\right)+\left(a+c\right)+2\left(b+c\right)}\)

Theo Cauchy: \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)

=> \(\frac{1}{2a+3b+3c}\le\frac{1}{4}\left(\frac{1}{\left(a+b\right)+\left(a+c\right)}+\frac{1}{2\left(b+c\right)}\right)\le\frac{1}{4}\left(\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)+\frac{1}{2\left(b+c\right)}\right)\)

=> \(\frac{1}{2a+3b+3c}\le\frac{1}{8}\left(\frac{1}{2\left(a+b\right)}+\frac{1}{2\left(a+c\right)}+\frac{1}{b+c}\right)\)

Tương tự: \(\frac{1}{3a+2b+3c}\le\frac{1}{8}\left(\frac{1}{2\left(a+b\right)}+\frac{1}{2\left(b+c\right)}+\frac{1}{a+c}\right)\)

Và: \(\frac{1}{3a+3b+2c}\le\frac{1}{8}\left(\frac{1}{2\left(a+c\right)}+\frac{1}{2\left(b+c\right)}+\frac{1}{a+b}\right)\)

=> \(P\le\frac{1}{8}\left(\frac{2}{a+b}+\frac{2}{a+c}+\frac{2}{b+c}\right)=\frac{1}{4}.2017\)

=> Pmax = 2017:4=504,25

0o0 Hoàng Phú Huy 0o0
12 tháng 4 2018 lúc 7:17

\(Ta có: \(\frac{1}{2a+3b+3c}=\frac{1}{\left(a+b\right)+\left(a+c\right)+2\left(b+c\right)}\) Theo Cauchy: \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\) => \(\frac{1}{2a+3b+3c}\le\frac{1}{4}\left(\frac{1}{\left(a+b\right)+\left(a+c\right)}+\frac{1}{2\left(b+c\right)}\right)\le\frac{1}{4}\left(\frac{1} {4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)+\frac{1}{2\left(b+c\right)}\right)\) => \(\frac{1}{2a+3b+3c}\le\frac{1}{8}\left(\frac{1}{2\left(a+b\right)}+\frac{1}{2\left(a+c\right)}+\frac{1}{b+c}\right)\) Tương tự: \(\frac{1}{3a+2b+3c}\le\frac{1}{8}\left(\frac{1}{2\left(a+b\right)}+\frac{1}{2\left(b+c\right)}+\frac{1}{a+c}\right)\) Và: \(\frac{1}{3a+3b+2c}\le\frac{1}{8}\left(\frac{1}{2\left(a+c\right)}+\frac{1}{2\left(b+c\right)}+\frac{1}{a+b}\right)\) => \(P\le\frac{1}{8}\left(\frac{2}{a+b}+\frac{2}{a+c}+\frac{2}{b+c}\right)=\frac{1}{4}.2017\) => Pmax  = 2017:4=504,25\)