Cho a, b, c > 0. Chứng minh rằng: \(M=\dfrac{5b^3-a^3}{ab+3b^2}+\dfrac{5c^3-b^3}{bc+3c^2}+\dfrac{5a^3-c^3}{ca+3a^2}\le a+b+c\)
Cho a,b,c là các số dương thỏa mãn điều kiên a+b+c=3. Tìm GTLN của biểu thức:
P=\(\frac{5b^3-a^3}{ab+3b^2}+\frac{5c^3-b^3}{bc+3c^2}+\frac{5a^3-c^3}{ca+3a^2}\)
Cho a,b,c thỏa mãn: a+b+c=12. Chứng minh rằng:
Cho 3 số dương thỏa mãn a+b+c \(\le\)2018 . Cm:
\(\dfrac{5a^3-b^3}{ab+3a^2}\)+ \(\dfrac{5b^3-c^3}{bc+3b^2}\) + \(\dfrac{5c^3-a^3}{ca+3c^2}\) \(\le\) 2018
a. Chứng minh rằng với mọi x ,y > 0 ta có \(x^3+y^3\ge xy\left(x+y\right)\)
b. Cho a,b,c là các số dương thỏa mãn a +b + c = 3. CMR:
\(\frac{5a^3-b^3}{ab+3a^3}+\frac{5b^3-c^3}{bc+3b^3}+\frac{5c^3-a^3}{ca+3c^3}\le3\)
( Giúp mình phần b nhé!)
Lưu ý: phần a là gợi ý cho phần b đó
1) cho các số thực dương a,b thỏa mãn \(3a+b\le1\). Tìm Min của \(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\)
2) Với hai số thực a,b không âm thỏa mãn \(a^2+b^2=4\). Tìm Max \(M=\dfrac{ab}{a+b+2}\)
3) Cho x,y khác 0 thỏa mãn \(\left(x+y\right)xy=x^2+y^2-xy\). Tìm Max \(A=\dfrac{1}{x^3}+\dfrac{1}{y^3}\)
Cho a,b,c,d là các số nguyên thỏa mãn: 3a^5 + 3b^5 − 2c^5 − 7d^5 = 0 . CMR: a+b −4c − 9d ⋮ 5
Cho ba số dương a,b,c thoả mãn: a+b+c=1
Tìm giá trị nhỏ nhất của biểu thức:
\(P=\frac{a}{\sqrt{b^3+5b^2-3b+18}}+\frac{b}{\sqrt{c^3+5c^2-3c+18}}+\frac{c}{\sqrt{a^3+5a^2-3a+18}}\)
Cho a, b, c dương. CMR: \(\dfrac{2a^2+3b^2}{2a^3+3b^3}+\dfrac{2b^2+3a^2}{2b^3+3a^3}\le\dfrac{4}{a+b}\)