Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
minh đức
Xem chi tiết
Lê Song Phương
22 tháng 6 2023 lúc 6:59

\(\left(x^2+y\right)\left(x+y^2\right)=\left(x+y\right)^3\)

\(\Leftrightarrow x^3+x^2y^2+xy+y^3=x^3+y^3+3xy\left(x+y\right)\)

\(\Leftrightarrow xy\left(xy+1\right)=3xy\left(x+y\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}xy=0\\xy+1=3\left(x+y\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\y=0\\xy-3x-3y+1=0\end{matrix}\right.\)

 TH1: \(x=0\) thì thay vào pt đề bài, suy ra điều luôn đúng với mọi số nguyên \(x\). Hơn nữa do vai trò \(x,y\) như nhau nên tương tự với trường hợp \(y=0\) 

 TH2: \(xy-3x-3y+1=0\)

\(\Leftrightarrow x\left(y-3\right)-3\left(y-3\right)=8\)

\(\Leftrightarrow\left(x-3\right)\left(y-3\right)=8\)

Từ đó ta có bảng:

\(x-3\) 1 8 2 4 -1 -8 -2 -4
\(y-3\) 8 1 4 2 -8 -1 -4 -2
\(x\) 4 11 5 7 2 -5 1 -1
\(y\) 11 4 7 5 -5 2 -1 1

Như vậy trong trường hợp này, ta tìm ra được các nghiệm \(\left(4;11\right);\left(11;4\right);\left(5;7\right);\left(7;5\right);\left(2;-5\right);\left(-5;2\right);\left(1;-1\right);\left(-1;1\right)\)

Tóm lại, ta tìm được các nghiệm nguyên sau của pt đã cho:

\(\left(4;11\right);\left(11;4\right);\left(5;7\right);\left(7;5\right);\left(2;-5\right);\left(-5;2\right);\left(1;-1\right);\left(-1;1\right)\)\(\left(0;y\right),\forall y\inℤ\) và \(\left(x;0\right),\forall x\inℤ\)

Tiến Hoàng Minh
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 3 2022 lúc 18:09

- Với \(x< 0\Rightarrow2^x\notin Z\Rightarrow2^x+7\notin Z\) pt vô nghiệm

- Với \(x=0\) ko thỏa mãn

- Với \(x=1\Rightarrow y=\pm3\)

- Với \(x>1\Rightarrow2^x+7\) luôn lẻ \(\Rightarrow y^2\) lẻ \(\Rightarrow y\) lẻ \(\Rightarrow y=2k+1\)

\(\Rightarrow2^x+7=\left(2k+1\right)^2\)

\(\Rightarrow2^x+6=4k\left(k+1\right)\)

\(\Rightarrow4k\left(k+1\right)-2^x=6\)

Do \(x>1\Rightarrow2^x⋮4\Rightarrow4k\left(k+1\right)-2^x⋮4\) trong khi \(6⋮̸4\)

\(\Rightarrow\) Ko tồn tại x;k thỏa mãn

Vậy \(\left(x;y\right)=\left(1;-3\right);\left(1;3\right)\)

黃旭熙.
Xem chi tiết
Hung nguyen
20 tháng 7 2021 lúc 11:33

\(4x^2=4y^6-4y^3\)

\(\Leftrightarrow4y^6-4y^3+1-4x^2=1\)

\(\Leftrightarrow\left(2y^3-1\right)^2-4x^2=1\)

\(\Leftrightarrow\left(2y^3-1-2x\right)\left(2y^3-1+2x\right)=1\)

PT vô nghiệm
Xem chi tiết
:vvv
Xem chi tiết
Trần Minh Hoàng
13 tháng 3 2021 lúc 23:05

\(PT\Leftrightarrow y\left(x^2-2x-1\right)=x^2+2x-1\).

Từ đó \(x^2-2x-1\vdots x^2+2x-1\)

\(\Leftrightarrow4x⋮x^2+2x-1\) (1)

\(\Rightarrow4\left(x^2+2x-1\right)-4x^2⋮x^2+2x-1\)

\(\Leftrightarrow8x-4⋮x^2+2x-1\) (2)

Từ (1), (2) suy ra \(8⋮x^2+2x-1\).

Đến đây bạn xét TH.

 

 

 

 

 

Lê Xuân Hiếu
Xem chi tiết
ngonhuminh
13 tháng 1 2017 lúc 16:12

a)

\(\Leftrightarrow yz=z^2+2z+3\Leftrightarrow z\left(y-2-z\right)=3\)

\(\hept{\begin{cases}z=\left\{-3,-1,1,3\right\}\\y-2-z=\left\{-1,-3,3,1\right\}\end{cases}\Rightarrow\hept{\begin{cases}x=\left\{-2,0,2,4\right\}\\y=\left\{-2,-4,6,6\right\}\end{cases}}}\)

:vvv
Xem chi tiết
An Thy
14 tháng 7 2021 lúc 9:03

\(x^3+y^3=5+x^2y+xy^2\Rightarrow x^3+y^3-\left(x^2y+xy^2\right)=5\)

\(\Rightarrow\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)=5\)

\(\Rightarrow\left(x+y\right)\left(x-y\right)^2=5\)

Vì \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\\5>0\end{matrix}\right.\Rightarrow x+y>0\)

Lại có \(\left\{{}\begin{matrix}\left(x-y\right)^2\in N\\\left(x-y\right)^2< 5\end{matrix}\right.\) và \(\left(x-y\right)^2\) là số chính phương

\(\Rightarrow\left(x-y\right)^2=1\Rightarrow\left\{{}\begin{matrix}x+y=5\\x-y=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)

trần thành đạt
Xem chi tiết
vũ tiền châu
19 tháng 12 2017 lúc 21:55

đặt 2 cái trong ngoặc kia là a và b, phân tích đa thức thành nhân tử ở VT

rồi chuyển sang cứ tạo thành hhằng đẳng thức rồi nhóm các nhân tử còn lại chia thành 2 nhóm và úc đó thay a,b theo x, y vào ,...

trần thành đạt
19 tháng 12 2017 lúc 22:02

làm cho mk luôn đi bạn

Trinh quang huy
Xem chi tiết
T.Q.Hưng.947857
21 tháng 2 2020 lúc 21:27

dùng denta là xong ngay ấy bạn

Khách vãng lai đã xóa
bùi văn mạnh
21 tháng 2 2020 lúc 21:32

(Đưa về phương trình bậc 2 ẩn yy, tham số xx)

Pt ⇔2y2+(3x−1)y+x2−2x−6=0⇔2y2+(3x−1)y+x2−2x−6=0

Δ=(3x−1)2−4.2(x2−2x−6)=x2+10x+49=(x+5)2+24>0∀xΔ=(3x−1)2−4.2(x2−2x−6)=x2+10x+49=(x+5)2+24>0∀x

Để phương trình đã cho có nghiệm nguyên thì Δ=(x+5)2+24Δ=(x+5)2+24 phải là một số chính phương.

Đặt (x+5)2+24=k2(k∈N∗)⇔(x+5)2−k2=−24⇔(x+5−k)(x+5+k)=−24=−12.2=−6.4=−4.6=−2.12(x+5)2+24=k2(k∈N∗)⇔(x+5)2−k2=−24⇔(x+5−k)(x+5+k)=−24=−12.2=−6.4=−4.6=−2.12(tích của 2 số nguyên có tổng chẵn, (số bé .số lớn)

Lập bảng xét giá trị ta được các giá trị của xx và yy:

x=−10→y=6tm;x=−10→y=6tm;

x=−6→y=6tm;x=−6→y=6tm;

x=−4→y=4,5ktm;x=−4→y=4,5ktm;

x=0→y=2tmx=0→y=2tm

Vậy...

Khách vãng lai đã xóa