cho tam giác ABC có 3 góc đều nhọn. các đường cao BP, CQ cắt nhau tại H, chứng minh rằng ^HQP=^HBC
cho tam giác abc có 3 góc nhọn. các đường cao BP,CQ cắt nhau tại H
a/ CMR góc HQP = góc HBC
b/ CMR PQ.BC+BQ.PC=BP.QC
Hướng dẫn giúp em/mình bài thi HSG toán 8 này với ạ.
Cho tam giác ABC có 3 góc đều nhọn. Các đường cao BP, CQ của tam giác ABC cắt nhau tại H. Gọi M là điểm nằm trong tam giác ABC sao cho góc MBA = góc MCA. Gọi E, F lần lượt là hình chiếu của M lên các cạnh AB, AC. Chứng minh rằng đường thẳng HM đi qua trung điểm của EF.
) Cho tam giác ABC có các góc đều nhọn. Các đường cao AD, BE, CF cắt nhau tại H.
1) Chứng minh rằng: AE.AC = AF.AB
2) Chứng minh rằng tam giác AFE đồng dạng tam giác ACB
3) Chứng minh rằng tam giác FHE đồng dạng tam giác BHC
4) Chứng minh rằngBF.BA+CE.CA = BC2
1: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc EAB chung
=>ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE*AC=AB*AF và AE/AB=AF/AC
2: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc FAE chung
=>ΔAEF đồng dạng vơi ΔABC
3: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
góc FHB=góc EHC
=>ΔHFB đồng dạng với ΔHEC
=>HF/HE=HB/HC
=>HF/HB=HE/HC
Xét ΔHFE và ΔHBC có
HF/HB=HE/HC
góc FHE=góc BHC
=>ΔFHE đồng dạng với ΔBHC
Cho \(\Delta\)ABC có 3 góc nhọn. Các đường cao BP, CQ của \(\Delta\)ABC cắt nhau tại H.
a. Chứng minh rằng góc HQP = góc HBC (mk lm đc rồi).
b. Chứng minh rằng PQ.BC + BQ.PC = BP.QC
c. Gọi M là điểm nằm trong tam giác ABC sao cho góc MBA = góc MCA. Gọi E, F lần lượt là hình chiếu của M trên các cạnh AB, AC. Chứng minh rằng đường thẳng HM đi qua trung điểm của EF.
Cho tam giác ABC có 3 góc nhọn, các đường cao BD và CEcắt nhau tại H. Chứng minh:
a) HE.HC=HB.HD
b) tam giác HED đồng dạng với tam giác HBC
a) xét tam giác BHE và tam giác CHD b)
góc BHE =góc CHD (đối đỉnh)
góc E= góc D=90 độ
Vậy tam giác BHE ~ tam giác CHD(g_g)
Suy ra:HB.HD=HE.HC
C1. Cho tam giác nhọn DEF. Đường cao EA và FB cắt nhau tại H.
a) Chứng minh rằng
b) Chứng minh rằng
C2. Cho tam giác nhọn ABC. Đường cao BD và CE cắt nhau tại H.
a) Chứng minh rằng
b) Chứng minh rằng
C3. Cho ABC vuông tại A, đư¬ờng cao AH cắt đ¬ường phân giác CD tại I.
a) Chứng minh rằng:
b) Chứng minh AC2 = CH.BC
C4. Cho hình bình hành ABCD, trên cạnh AB lấy một điểm M. Đường thẳng DM cắt cạnh CB kéo dài tại N.
a) Chứng minh : MAD MBN
b) Chứng minh : MA.MN = MD.MB
Cho tam giác ABC có 3 góc nhọn, các đường cao AD, BE, CF cắt nhau tại H a) Chứng minh tam giác ABE ~ tam giác ACF b) Chứng minh DB.DC=DH.DA
a) Xét ΔABE vuông tại E và ΔACF vuông tại F có
\(\widehat{FAC}\) chung
Do đó: ΔABE∼ΔACF(g-g)
b) Ta có: ΔBEC vuông tại E(gt)
nên \(\widehat{EBC}+\widehat{ECB}=90^0\)(hai góc nhọn phụ nhau)
hay \(\widehat{DBH}+\widehat{ACB}=90^0\)(1)
Ta có: ΔDAC vuông tại D(gt)
nên \(\widehat{DAC}+\widehat{DCA}=90^0\)(hai góc nhọn phụ nhau)
hay \(\widehat{DAC}+\widehat{ACB}=90^0\)(2)
Từ (1) và (2) suy ra \(\widehat{DBH}=\widehat{DAC}\)
Xét ΔDBH vuông tại D và ΔDAC vuông tại D có
\(\widehat{DBH}=\widehat{DAC}\)(cmt)
nên ΔDBH\(\sim\)ΔDAC(g-g)
Suy ra: \(\dfrac{DB}{DA}=\dfrac{DH}{DC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(DB\cdot DC=DH\cdot DA\)(đpcm)
a)
Xét ΔABE và ΔACF có:
\(\widehat{A}\) chung
\(\widehat{BEA}=\widehat{CFA}\) (\(=90^0\))
⇒ ΔABE \(\sim\) ΔACF (g.g) (ĐPCM)
Cho tam giác ABC có 3 góc nhọn, nội tiếp đường tròn O. Hai đường cao AD, BE cắt nhau tại H. Chứng minh tứ giác ABDE nội tiếp đường tròn
Cho tam giác ABC có 3 gó nhọn , nội tiếp đường tròn O . Hai đường cao AD,BE cắt nhau tại H
a, chứng minh tứ giác ABDE nội tiếp đường tròn
b, Tia AO cắt đương tròn O tại K . Chứng minh tứ giác BHCK là hình bình hành