cho tam giác abc có 3 góc nhọn. các đường cao BP,CQ cắt nhau tại H
a/ CMR góc HQP = góc HBC
b/ CMR PQ.BC+BQ.PC=BP.QC
) Cho tam giác ABC có các góc đều nhọn. Các đường cao AD, BE, CF cắt nhau tại H.
1) Chứng minh rằng: AE.AC = AF.AB
2) Chứng minh rằng tam giác AFE đồng dạng tam giác ACB
3) Chứng minh rằng tam giác FHE đồng dạng tam giác BHC
4) Chứng minh rằngBF.BA+CE.CA = BC2
Cho tam giác ABC có 3 góc nhọn, các đường cao BD và CEcắt nhau tại H. Chứng minh:
a) HE.HC=HB.HD
b) tam giác HED đồng dạng với tam giác HBC
C1. Cho tam giác nhọn DEF. Đường cao EA và FB cắt nhau tại H.
a) Chứng minh rằng
b) Chứng minh rằng
C2. Cho tam giác nhọn ABC. Đường cao BD và CE cắt nhau tại H.
a) Chứng minh rằng
b) Chứng minh rằng
C3. Cho ABC vuông tại A, đư¬ờng cao AH cắt đ¬ường phân giác CD tại I.
a) Chứng minh rằng:
b) Chứng minh AC2 = CH.BC
C4. Cho hình bình hành ABCD, trên cạnh AB lấy một điểm M. Đường thẳng DM cắt cạnh CB kéo dài tại N.
a) Chứng minh : MAD MBN
b) Chứng minh : MA.MN = MD.MB
Cho tam giác ABC có 3 góc nhọn, các đường cao AD, BE, CF cắt nhau tại H a) Chứng minh tam giác ABE ~ tam giác ACF b) Chứng minh DB.DC=DH.DA
Bài 4. (1,5 điểm)
Cho tam giác nhọn ABC
BD và CE là hai đường cao cắt nhau tại H.
a) Chứng minh rằng:
tam giác HED đồng dạng HBC
b) Chứng minh rằng:
tam giác ADE đồng dạng ABC
c) Gọi M là trung điểm của BC, qua H kẻ đường thẳng vuông góc với HM, cắt AB tại
I, cắt AC tại K. Chứng minh tam giác IMK là tam giác cân
giúp mik vs mn ơi
Cho tam giác ABC có 3 góc nhọn, hai đường cao BE,CF cắt nhau tại H. Chứng minh rằng AH vuông góc với BC
cho tam giác ABC có 3 góc nhọn, các đường cao BD, CE của tam giác cắt nhau tại H. chứng minh rằng:
a) tam giác ABC đồng dạng với tam giac ACE
b) HE.HC=HD.HB
c) kẻ đường vuông góc với AB tại B đường vuông góc voi AC tại C cắt nhau tại K. gọi M là trung điểm cua BC. chứng minh: ba điểm H,M,K thẳng hàng