Tìm tất cả các số thực x sao cho trong 4 số \(x-\sqrt{2};x^2+2\sqrt{2};x-\frac{1}{x};x+\frac{1}{x}\)có đúng một số không phải là số nguyên.
Tìm tất cả các số thực x sao cho trong 4 số \(x-\sqrt{2},x^2+2\sqrt{2},x-\frac{1}{x},x+\frac{1}{x}\) có đúng 1 số không phái là số nguyên
Tìm tất cả các số thực x sao cho trong bốn số \(x^2+4\sqrt{3},x^2-\frac{4}{x},x^2+\frac{4}{x}\)và \(x^4+56\sqrt{3}\)có đúng một số không phải là số nguyên
chu vi của một hình chữ nhật là 96cm . Nếu thêm vào chiều rộng 3cm và bớt ở chiều dài đi 3cm . Thì hình chữ nhật đó thành hình vuông . Tính diện tích hình chữ nhật đó
a) Tìm tất cả các số thực x sao cho x2 = 4.
b) Tìm tất cả các số thực x sao cho x3 = - 8.
a) \({x^2} = 4 = {2^2} = {\left( { - 2} \right)^2} \Leftrightarrow x = \pm 2\)
b) \({x^3} = - 8 = {\left( { - 2} \right)^3} \Leftrightarrow x = - 2.\)
- Chú ý:
Trong toán học, căn bậc chẵn của một số là một số lớn hơn 0. Do đó số âm không có căn bậc chẵn.
tìm tất cả các số thực x sao cho \(\sqrt[3]{3+\sqrt{\frac{x}{27}}}+\sqrt[3]{3-\sqrt{\frac{x}{27}}}\in Z\)
Đặt Q = \(\sqrt[3]{3+\sqrt{\frac{x}{27}}}\)+\(\sqrt[3]{3-\sqrt{\frac{x}{27}}}\)
\(^{Q^3}\)= 3 + \(\sqrt{\frac{x}{27}}\)+3 - \(\sqrt{\frac{x}{27}}\)+3(\(\sqrt[3]{3+\sqrt{\frac{x}{27}}}\)*\(\sqrt[3]{3-\sqrt{\frac{x}{27}}}\) )(\(\sqrt[3]{3+\sqrt{\frac{x}{27}}}\)+\(\sqrt[3]{3-\sqrt{\frac{x}{27}}}\))
\(Q^3\)= 6 +3 \(\sqrt[3]{\left(3+\sqrt{\frac{x}{27}}\right)\left(3-\sqrt{\frac{x}{27}}\right)}\)\(Q\)
\(Q^3\)= 6+ 3\(\sqrt[3]{\left(3^2-\left(\sqrt{\frac{x}{27}}\right)^2\right)}\)\(Q\)
\(Q^3\)= 6 + 3 \(\sqrt[3]{9-\frac{x}{27}}\)\(Q\)
\(Q^3\)= 6 + 3\(\sqrt[3]{\frac{243-x}{27}}\)\(Q\)
\(Q^3\)= 6 + \(\sqrt[3]{243-x}\)\(Q\)
\(Q\)( \(Q^2\)- \(\sqrt[3]{243-x}\)) =6
\(Q\)=\(\frac{6}{Q^2-\sqrt[3]{243-x}}\)
Vì Q \(\in\)Z nên \(Q^2\)\(\in\)\(Z\), 6\(\in\)\(Z\) nên \(\sqrt[3]{243-x}\)\(\in\)\(Z\); \(Q^2\)- \(\sqrt[3]{243-x}\)\(\in\)\(Ư\left(6\right)\)=\(\left\{+-1;+-2;+-3;+-6\right\}\)
Suy ra 243 -x \(\in\)+ -1; + -8 ;+-27;....
\(Q^2\)-\(\sqrt[3]{243-x}\)= 1 \(\Rightarrow\)\(Q^2\)= 1+\(\sqrt[3]{243-x}\)Vì Q\(\in\)Z nên \(\sqrt[3]{243-x}\)= 8
Suy ra x=241 hoặc x=245
Vậy......
Không biết mk lm đúng hay sai mong mấy bn đóng góp ý kiến . Cảm ơn nhiều ạ
tìm tất cả các giá trị thực của tham số m sao cho đồ thị của hàm số \(y=\dfrac{x+1}{\sqrt{mx^2+1}}\) có 2 tiệm cận ngang.
Với \(m=0\) ko thỏa mãn
Với \(m\ne0\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{x+1}{\sqrt{mx^2+1}}=-\dfrac{1}{\sqrt{m}}\); \(\lim\limits_{x\rightarrow+\infty}\dfrac{x+1}{\sqrt{mx^2+1}}=\dfrac{1}{\sqrt{m}}\)
\(\Rightarrow\) Hàm có 2 TCN khi \(\sqrt{m}\) xác định \(\Rightarrow m>0\)
tìm tất cả các giá trị thực của tham số m sao cho đồ thị của hàm số \(y=\dfrac{\sqrt{1-x}}{x-m}\) có tiệm cận đứng .
ĐKXĐ: \(x\le1\)
Hàm có tiệm cận đứng khi và chỉ khi phương trình:
\(x-m=0\) có nghiệm \(x< 1\)
\(\Leftrightarrow m< 1\)
Cho hàm số y=\(\sqrt{x^4-x^2+1+mx\sqrt{2x^4+2}}.\) . Tìm tất cả các giá trị của tham số m để hàm số có tập xác định là tập số thực R. GIẢI GIÚP MÌNH VỚI!!
Tìm tất cả các số thực x thỏa mãn:\(\sqrt[3]{x+4}-\sqrt[3]{x}=1\)
Dễ thôi bạn đặt căn lập x+4=a; căn lập x=b =>a khác b
=> a^3=x+4; b^3=x
=> a^3-b^3=4
=> (a^3-b^3)/4=1
từ pt ta có a-b=1
<=> 4(a-b)=a^3-b^3
<=> (a^2+ab+b^2-4)(a-b)=0
Do a khác b => a^2+ab+b^2=4
Thay 4= a^3-b^3
=> a^2+ab+b^2=a^3-b^3
=> tìm đc a-b-1=0
=> a=b+1
xong thay vào hệ pt x+4=a^3; x=b^3 thôi sẽ tìm đc a,b => Tìm đc x
Tìm tất cả các giá trị thực của tham số m sao cho hàm số \(y=x^4-2\left(m-1\right)x^2+m-2\) đồng biến trên khoảng (1;3)
y'= \(4x^3-4\left(m-1\right)x\)
Để hàm số đồng biến trên khoảng (1;3) thì \(y'\left(x\right)\ge0,\forall x\in\left(1;3\right)\)
\(\Leftrightarrow x^2-\left(m-1\right)\ge0,\forall x\in\left(1;3\right)\)
\(\Leftrightarrow m-1\le x^2,\forall x\in\left(1;3\right)\)
\(\Rightarrow m-1\le1\Leftrightarrow m\le2\)
Vậy \(m\in\) (−\(\infty\);2]