tìm GTNN
a)\(\frac{-3}{x^2+1}\)
b)\(\frac{x^2+3x-1}{x^2}\)
c)\(\frac{x^4+3x^2+3}{x^2+1}\)
Các bạn ơi ,giúp mình mấy bài này với:
BÀI 1: Tính giá trị biểu thức
a) A =6x3_3x2+2* /x/+4 với x=\(\frac{-2}{3}\)
b)B=2*/x/- 3/y/ với x=\(\frac{1}{2};y=-3\)
c)C=\(\frac{5x^2-7x+1}{3x-1}với\)/x/=\(\frac{1}{2}\)
BÀI 2: Tìm x,biết
a) /x-3/=/4-x/
b)/x-1/=2x
BÀI 3: Tìm GTNN của
A=2*/3x-1/-4
Tìm GTLN của biểu thức
a) \(\frac{3}{x^2+1}\) b) \(\frac{3x^2+6x+8}{x^2+2x+2}\)
Tìm GTNN của biểu thức
a) \(\frac{-3}{x^2+1}\) b) \(\frac{x^2+3x-1}{x^2}\)
c) \(\frac{x^4+3x^2+3}{x^2+1}\) ( Cô - si )
1. Tìm GTNN của A= \(\frac{x^2-2x+2018}{x^2}\)
2. Tìm GTLN của B=\(\frac{3x^2+9x+17}{3x^2+9x+7}\)
3. Tìm GTLN của M= \(\frac{3x^2+14}{x^2+4}\)
4. Cho x+y=2. Tìm GTNN của A= \(x^3+y^3+2xy\)
1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)
vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)
dấu = xảy ra khi x-2018=0
=> x=2018
Vậy Min A=\(\frac{2017}{2017}\)khi x=2018
2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)
\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)
để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất
mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)
dấu = xảy ra khi \(x+\frac{3}{2}=0\)
=> x=\(-\frac{3}{2}\)
Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)
3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)
để M lớn nhất => x2+4 nhỏ nhất
mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)
dấu = xảy ra khi x2 =0
=> x=0
Vậy Max M\(=\frac{7}{2}\)khi x=0
ps: bài này khá dài, sai sót bỏ qua =))
ê viết lộn dòng này :v
\(MinA=\frac{2017}{2018}\)nha
bài 1:giải các pt sau:
a/\(\frac{1-x}{x+1}\)+3=\(\frac{2x+3}{x+1}\)
b/\(\frac{\left(x+2\right)^2}{2x-3}-1=\frac{x^2+10}{2x-3}\)
c/\(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)
d/\(\frac{1-6x}{x-2}+\frac{9x+4}{x+2}=\frac{x\left(3x-2\right)+1}{x^2-4}\)
e/\(\frac{12}{1-9x^2}=\frac{1-3x}{1+3x}-\frac{1+3x}{1-3x}\)
f\(\frac{x+4}{x^2-3x+2}+\frac{x+1}{x^2-4x+3}=\frac{2x+5}{x^2-4x+3}\)
a) GTNN: A=x(x-3)(x-4)(x-7)
b) GTNN: B=2x\(^2\)+y\(^2\)-2xy-2x+3
c) GTNN: A=\(\frac{2}{6x-5-9x^2}\)
d) GTNN: B=\(\frac{3x^2+9x+\text{1}7}{3x^2+9x+7}\)
e) GTNN: A=\(\frac{3-4x}{x^2+\text{1}}\)
f) GTLN: A=\(\frac{3-4x}{x^2+\text{1}}\)
đặt x^2-7x=y=> \(y\ge-\frac{49}{4}\) (*)
\(A=y\left(y+12\right)=y^2+12y=\left(y+6\right)^2-36\ge-36\)
đẳng thức khi y=-6 thủa mãn đk (*)
Vậy: GTNN của A=-36 khí y=-6 =>\(\left[\begin{matrix}x=1\\x=6\end{matrix}\right.\)
Thực hiện phép tính:
a)\(\frac{2x+6}{3x^2-x}:\frac{x^2+3x}{1-3x}\)
b)\(\frac{x+3}{x}-\frac{x}{x-3}+\frac{9}{x^2-3x}\)
c)\(\frac{x+3}{x^2-1}-\frac{1}{x^2+x}\)
d)\(\frac{1}{3x-2}-\frac{4}{3x+2}-\frac{-10x+8}{9x^2-4}\)
e)\(\frac{3}{2x^2+2x}+\frac{2x-1}{x^2-1}-\frac{2}{x}\)
f)\(\left(\frac{9}{x^3-9x}+\frac{1}{x+3}\right):\left(\frac{x-3}{x^2+3x}-\frac{x}{3x+9}\right)\)
g)\(\frac{8}{\left(x^2+3\right)\left(x^2-1\right)}+\frac{2}{x^2+3}+\frac{1}{x+1}\)
\(a)=\frac{-2\left(x+3\right)}{x\left(1-3x\right)}.\frac{1-3x}{x\left(x+3\right)}\)
\(=\frac{-2}{x^2}\)
\(b)=\frac{\left(x+3\right)\left(x-3\right)}{x\left(x-3\right)}-\frac{x^2}{x\left(x-3\right)}+\frac{9}{x\left(x-3\right)}\)
\(=\frac{x^2-3x+3x-9-x^2+9}{x\left(x-3\right)}\)
\(=x\left(x-3\right)\)
\(c)=\frac{x+3}{\left(x-1\right)\left(x+1\right)}-\frac{1}{x\left(x+1\right)}\)
\(=\frac{\left(x+3\right).x}{x\left(x-1\right)\left(x+1\right)}-\frac{1.\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x^2+3x-x+1}{x\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x\left(x+3\right)-\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x+3}{x+1}\)
# Sắp ik ngủ nên làm vậy hoi, ko chắc phần kq câu b và c đâu nha
thực hiện phép tính
a) (x3+8y3):(2y+x) b.\(\frac{a-1}{2\left(a-4\right)}+\frac{a}{a-4}\) c. (x3+3x2y+3xy2+y3):(2x+2y)
d. (x-5)2+(7-x)(x+2) e.\(\frac{3x}{x-2}-\frac{2x+1}{2-x}\) f. \(\left(\frac{x+2}{x+1}-\frac{2x}{x-1}\right)\cdot\frac{3x+3}{x}+\frac{4x^2+x+7}{x^2-x}\)
g.\(\left(\frac{1}{x+1}-\frac{3}{x^{3^{ }}+1}+\frac{3}{x^2-x+1}\right)\cdot\left(\frac{3x^2-3x+3}{\left(x+1\right)\left(x+2\right)}\right)\) h.\(\frac{1}{3x-2}-\frac{1}{3x+2}-\frac{3x+6}{4-9x^2}\)
Nguyễn Nam giúp giùm
) \(\dfrac{x^3+8y^3}{2y+x}\)
\(=\dfrac{x^3+\left(2y\right)^3}{x+2y}\)
\(=\dfrac{\left(x+2y\right)\left[x^2+x.2y+\left(2y\right)^2\right]}{x+2y}\)
\(=x^2+2xy+4y^2\)
b) \(\dfrac{a-1}{2\left(a-4\right)}+\dfrac{a}{a-4}\) MTC: \(2\left(a-4\right)\)
\(=\dfrac{a-1}{2\left(a-4\right)}+\dfrac{2a}{2\left(a-4\right)}\)
\(=\dfrac{a-1+2a}{2\left(a-4\right)}\)
\(=\dfrac{3a-1}{2\left(a-4\right)}\)
c) \(\dfrac{x^3+3x^2y+3xy^2+y^3}{2x+2y}\)
\(=\dfrac{\left(x+y\right)^3}{2\left(x+y\right)}\)
\(=\dfrac{\left(x+y\right)^2}{2}\)
d) \(\left(x-5\right)^2+\left(7-x\right)\left(x+2\right)\)
\(=\left(x^2-2.x.5+5^2\right)+\left(7x+14-x^2-2x\right)\)
\(=x^2-10x+25+7x+14-x^2-2x\)
\(=39-5x\)
e) \(\dfrac{3x}{x-2}-\dfrac{2x+1}{2-x}\)
\(=\dfrac{3x}{x-2}+\dfrac{2x+1}{x-2}\)
\(=\dfrac{3x+2x+1}{x-2}\)
\(=\dfrac{5x+1}{x-2}\)
h) \(\dfrac{1}{3x-2}-\dfrac{1}{3x+2}-\dfrac{3x+6}{4-9x^2}\)
\(=\dfrac{1}{3x-2}-\dfrac{1}{3x+2}+\dfrac{3x+6}{9x^2-4}\)
\(=\dfrac{1}{3x-2}-\dfrac{1}{3x+2}+\dfrac{3x+6}{\left(3x-2\right)\left(3x+2\right)}\) MTC: \(\left(3x-2\right)\left(3x+2\right)\)
\(=\dfrac{3x+2}{\left(3x-2\right)\left(3x+2\right)}-\dfrac{3x-2}{\left(3x-2\right)\left(3x+2\right)}+\dfrac{3x+6}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{\left(3x+2\right)-\left(3x-2\right)+\left(3x+6\right)}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{3x+2-3x+2+3x+6}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{3x+10}{\left(3x-2\right)\left(3x+2\right)}\)
Giải các PT sau :
a,\(\frac{1-6x}{x-2}+\frac{9x+4}{x+2}=\frac{x\left(3x-2\right)+1}{\left(x+2\right)\left(x-2\right)}\)
b,(2 - 3x) (x + 11) = (3x - 2) (2 - 5x)
c,\(\frac{3x-2}{6}-5=\frac{3-2\left(x+7\right)}{4}\)
d,\(\frac{x}{x-3}+\frac{x}{x +1}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\)
e,\(\frac{x+1}{5}+\frac{x+2}{4}=\frac{x+3}{3}+\frac{x+4}{2}\)
Tìm GTNN của:
A= \(x^2+2y^2+3x-y+6\)
B= \(\frac{x^2-1}{x^2+1}\)
C= \(\frac{x^2-3x+3}{x^2-2x+1}\)
a) \(A=x^2+2y^2=3x-y+6\)
\(A=\left(x^2+3x+\frac{9}{4}\right)+\left(2y^2-y+\frac{1}{8}\right)+\frac{29}{8}\)
\(A=\left(x+\frac{3}{2}\right)^2+\left(\sqrt{2}y-\frac{1}{2\sqrt{2}}\right)^2+\frac{29}{8}\ge\frac{29}{8}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=-\frac{3}{2}\\\sqrt{2}y=\frac{1}{2\sqrt{2}}\end{cases}\Leftrightarrow\hept{\begin{cases}x=-\frac{3}{2}\\y=\frac{1}{4}\end{cases}}}\)
Vậy \(Min_A=\frac{29}{8}\Leftrightarrow\hept{\begin{cases}x=-\frac{3}{2}\\y=\frac{1}{4}\end{cases}}\)
b) \(B=\frac{x^2-1}{x^2+1}=1-\frac{2}{x^2+1}\)
Để B min \(\Leftrightarrow\frac{2}{x^2+1}\)max \(\Leftrightarrow x^2+1\)min
Mà \(x^2+1\ge1\)
Dấu " = " xảy ra : \(\Leftrightarrow x=0\)
Vậy \(Min_B=-1\Leftrightarrow x=0\)