Cho a, b, c dương thỏa a + b + c = 3. Tìm min \(P=\frac{a}{1+a^2}+\frac{b}{1+b^2}+\frac{c}{1+c^2}\)
Cho các số thực dương a,,b,c thỏa mãn a+b+c=3
Tìm min của P = \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{a^2+b^2+c^2}\)
Áp dụng BĐT AM-GM ta có :
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\frac{a+b+c}{abc}\)
\(=\frac{9}{abc\left(a+b+c\right)}\ge\frac{27}{\left(ab+bc+ca\right)^2}\)
Mặt khác theo BĐT AM-GM có :
\(\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)^2\le\left(\frac{a^2+b^2+c^2+2\left(ab+bc+ca\right)^3}{3}\right)=27\)
\(\Rightarrow\frac{27}{\left(ab+bc+ca\right)^2}\ge a^2+b^2+c^2\)
Đặt \(t=a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=3\)
Xét \(t+\frac{1}{t}=\frac{1}{9}+\frac{1}{t}+\frac{81}{9}.3=\frac{10}{3}\)
Vậy \(MinP=\frac{10}{3}\Leftrightarrow a=b=c=-1\)
Sửa lại chút , vội quá nên đánh lỗi .
Xét \(t+\frac{1}{t}=\frac{1}{9}+\frac{1}{t}+\frac{8t}{9}\ge2\sqrt{\frac{t}{9}.\frac{1}{t}}+\frac{8}{9}.3=\frac{10}{3}\)
\(\Rightarrow MinP=\frac{10}{3}\Leftrightarrow a=b=c=1\)
tính hộ 1 chia 0 nha
Cho 3 số dương a,b,c thỏa mãn \(a^2+b^2+c^2=1\)
Tìm min của P=\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\)
Ta có P=\(\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ca}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\)
Mà \(ab+bc+ca\le a^2+b^2+c^2\Rightarrow P\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2}=a^2+b^2+c^2=1\)
Vậy P min = 1 <=> a=b=c=1/căn(3)
^^
ta có a^2+b^2+c^2=1
Mà a,b,c thuộc N
\(\Rightarrow\)TH1:a và b =0
TH2:b và c=0
TH3:c và a=0
nhưng \(P=\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\)có b,c,a là mẫu
Do đó không có P
cho các số thực dương a,b,c thỏa mãn \(a+b+c\le\frac{3}{2}\)
tìm min B=\(\left(3+\frac{1}{a}+\frac{1}{b}\right)\left(3+\frac{1}{b}+\frac{1}{c}\right)\left(3+\frac{1}{c}+\frac{1}{a}\right)\)
\(\text{⋄}\)Dễ có: \(B\ge\left(3+\frac{4}{a+b}\right)\left(3+\frac{4}{b+c}\right)\left(3+\frac{4}{c+a}\right)\)
\(\text{⋄}\)Đặt \(b+c=x;c+a=y;a+b=z\left(x,y,z>0\right)\)thì \(a=\frac{y+z-x}{2};b=\frac{z+x-y}{2};c=\frac{x+y-z}{2}\)
Giả thiết được viết lại thành: \(x+y+z\le3\)và ta cần tìm giá trị nhỏ nhất của \(\left(3+\frac{4}{x}\right)\left(3+\frac{4}{y}\right)\left(3+\frac{4}{z}\right)\)
\(\text{⋄}\)Ta có: \(\left(3+\frac{4}{x}\right)\left(3+\frac{4}{y}\right)\left(3+\frac{4}{z}\right)=27+36\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+48\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)+\frac{64}{xyz}\)\(\ge27+36.\frac{9}{x+y+z}+48.\frac{27}{\left(x+y+z\right)^2}+64.\frac{27}{\left(x+y+z\right)^3}\ge343\)
Đẳng thức xảy ra khi x = y = z = 1 hay a = b = c = 1/2
Cho a,b,c là các số dương thỏa mãn \(a+b+c\le3\).Tìm Min của A=\(\frac{a}{1+a^2}+\frac{b}{1+b^2}+\frac{c}{1+c^2}\)
1.Cho a, b dương thỏa mãn ab=1. tìm min của B=\(\frac{1}{a}+\frac{1}{b}+\frac{2}{a+b}\)
2. Tìm min của T=\(\frac{4a}{b+c-a}+\frac{9b}{a+c-b}+\frac{16c}{a+b-c}\)
\(B=\frac{a+b}{ab}+\frac{2}{a+b}=\frac{a+b}{2ab}+\frac{a+b}{2ab}+\frac{2}{a+b}\)
\(B\ge\frac{2\sqrt{ab}}{2ab}+2\sqrt{\frac{2\left(a+b\right)}{2ab\left(a+b\right)}}=3\)
\(B_{min}=3\) khi \(a=b=1\)
Câu b thì đề chắc phải cho a;b;c là 3 cạnh của 1 tam giác để đảm bảo các mẫu thức dương chứ?
Đặt \(\left\{{}\begin{matrix}b+c-a=x\\a+c-b=y\\a+b-c=z\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{y+z}{2}\\b=\frac{x+z}{2}\\c=\frac{x+y}{2}\end{matrix}\right.\)
\(T=\frac{2\left(y+z\right)}{x}+\frac{9\left(x+z\right)}{2y}+\frac{8\left(x+y\right)}{z}\)
\(T=\frac{2y}{x}+\frac{2z}{x}+\frac{9x}{2y}+\frac{9z}{2y}+\frac{8x}{z}+\frac{8y}{z}\)
\(T=\frac{2y}{x}+\frac{9x}{2y}+\frac{2z}{x}+\frac{8x}{z}+\frac{8y}{z}+\frac{9z}{2y}\)
\(T\ge2\sqrt{\frac{18xy}{2xy}}+2\sqrt{\frac{16xz}{xz}}+2\sqrt{\frac{72yz}{2yz}}=26\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}3x=2y\\z=2x\\4y=3z\end{matrix}\right.\)
Cho a, b,c là các số thực dương thỏa mãn: a+b+c=1
Tìm Min của A=\(\frac{1}{2a-a^2}+\frac{1}{2b-b^2}+\frac{1}{2c-c^2}\)+3
Ta có đánh giá: \(\frac{1}{2a-a^2}\ge\frac{81-108a}{25}\) \(\forall a\in\left(0;1\right)\)
Thật vậy, BĐT tương đương:
\(\left(81-108a\right)\left(2a-a^2\right)\le25\)
\(\Leftrightarrow108a^3-297a^2+162a-25\le0\)
\(\Leftrightarrow\left(3a-1\right)^2\left(25-12a\right)\ge0\) (luôn đúng \(\forall a\in\left(0;1\right)\))
Tương tự: \(\frac{1}{2b-b^2}\ge\frac{81-108b}{25}\) ; \(\frac{1}{2c-c^2}\ge\frac{81-108c}{25}\)
Cộng vế với vế:
\(\Rightarrow A\ge\frac{243-108\left(a+b+c\right)}{25}+3=\frac{42}{5}\)
\(A_{min}=\frac{42}{5}\) khi \(a=b=c=\frac{1}{3}\)
với các số thực dương a , b , c thỏa mãn :
a , CMR \(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge1\)
b , tìm min \(P=2018\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\frac{1}{3\left(a^2+b^2+c^2\right)}\)
Cho a,b,c dương và a+b+c ≤ \(\frac{3}{2}\) Tìm Min của S biết S = \(a^2+b^2+c^2+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(S=\left(a^2+\frac{1}{4}\right)+\left(b^2+\frac{1}{4}\right)+\left(c^2+\frac{1}{4}\right)+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{3}{4}\)
\(\ge a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{3}{4}=\left(a+\frac{1}{4a}\right)+\left(b+\frac{1}{4b}\right)+\left(c+\frac{1}{4c}\right)-\frac{3}{4}\)
\(\ge1+1+1-\frac{3}{4}=\frac{9}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=\frac{1}{2}\)
à quên tách ra mà quên đoạn sau :v thêm vào tí nhé
\(S\ge\left(a+\frac{1}{4a}\right)+\left(b+\frac{1}{4b}\right)+\left(c+\frac{1}{4c}\right)+\frac{3}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{3}{4}\)
\(\ge2\sqrt{\frac{a}{4a}}+2\sqrt{\frac{b}{4b}}+2\sqrt{\frac{c}{4c}}+\frac{3}{4}.\frac{9}{a+b+c}-\frac{3}{4}\ge1+1+1+\frac{3}{4}.\frac{9}{\frac{3}{2}}-\frac{3}{4}=\frac{27}{4}\)
cho a;b;c là các số thực dương thỏa mãn abc=1.Tìm Min của \(P=\frac{a^2}{\left(a+1\right)\left(b+1\right)bc}+\frac{b^2}{\left(b+1\right)\left(c+1\right)ca}+\frac{c^2-a^2b-ab-a-1}{\left(c+1\right)\left(a+1\right)ab}\)
\(P=\frac{a^3}{\left(a+1\right)\left(b+1\right)}+\frac{b^3}{\left(b+1\right)\left(c+1\right)}+\frac{c^3}{\left(c+1\right)\left(a+1\right)}-1\)
\(P=\frac{a^3}{\left(a+1\right).\left(b+1\right)}+\frac{b^3}{\left(b+1\right).\left(c+1\right)}+\frac{c^3}{\left(c+1\right).\left(a+1\right)}\)
Ko biết đúng hay không!
Mới lớp 6 , mà tôi nghĩ Lầy Văn Lội đúng đấy!