Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
An Ton
Xem chi tiết
Aki Tsuki
10 tháng 6 2018 lúc 19:14

B = \(-x^2+4x+5=-\left(x^2-4x-5\right)=-\left[\left(x^2-4x+4\right)-9\right]=-\left(x-2\right)^2+9\)

Có: \(-\left(x-2\right)^2\le0\forall x\Rightarrow-\left(x-2\right)^2+9\le9\)

Vậy MaxB = 9 <=> x = 2

-----

C = \(x^2-4x+9=\left(x^2-4x+4\right)+5=\left(x-2\right)^2+5\)

Có: \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+5\ge5\)

Dấu ''='' xảy ra khi x = 2

Vậy MinC = 5 <=> x = 2

--------

D = \(9+30x^2+25x^2=9+55x^2\ge9\)

dấu ''='' xảy ra khi x = 0

vậy minC = 9 <=> x = 0

Hồ Quốc Khánh
Xem chi tiết
Minh Triều
2 tháng 2 2016 lúc 9:09

câu a) rút x theo y thế vào A rồi áp dụng HĐT

b)rút xy thế vào B 

c)HĐT

d)rút x theo y thé vào C

rồi dùng BĐT cô-si

e)BĐT chưa dấu giá trị tuyệt đối

 

Lemaingoc
Xem chi tiết
sun alex
Xem chi tiết
Tran Thu Hong
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
4 tháng 7 2017 lúc 17:03

Ta có : P = 4x(x - 1) + 11 

= 4x2 - 4x + 11

= (2x)2 - 4x + 1 + 10

= (2x - 1)2 + 10

Mà (2x - 1)2 \(\ge0\forall x\)

Nên (2x - 1)2 + 10 \(\ge10\forall x\)

Vậy GTNN của biểu thức là 10 khi và chỉ khi x = \(\frac{1}{2}\)

Huyền Lưu
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 7 2023 lúc 23:27

1:

a: =x^2-7x+49/4-5/4

=(x-7/2)^2-5/4>=-5/4

Dấu = xảy ra khi x=7/2

b: =x^2+x+1/4-13/4

=(x+1/2)^2-13/4>=-13/4

Dấu = xảy ra khi x=-1/2

e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4

Dấu = xảy ra khi x=1/2

f: x^2-4x+7

=x^2-4x+4+3

=(x-2)^2+3>=3

Dấu = xảy ra khi x=2

2:

a: A=2x^2+4x+9

=2x^2+4x+2+7

=2(x^2+2x+1)+7

=2(x+1)^2+7>=7

Dấu = xảy ra khi x=-1

b: x^2+2x+4

=x^2+2x+1+3

=(x+1)^2+3>=3

Dấu = xảy ra khi x=-1

 

Ly Nguyễn Khánh
Xem chi tiết
ST
12 tháng 7 2018 lúc 21:11

1/ Câu hỏi của Jey - Toán lớp 7 - Học toán với OnlineMath

2/ \(\left(a-b\right)^2+6ab=36\Rightarrow6ab=36-\left(a-b\right)^2\le36\Rightarrow ab\le\frac{36}{6}=6\)

Dấu "=" xảy ra khi \(\orbr{\begin{cases}a=b=\sqrt{6}\\a=b=-\sqrt{6}\end{cases}}\)

Vậy abmax = 6 khi \(\orbr{\begin{cases}a=b=\sqrt{6}\\a=b=-\sqrt{6}\end{cases}}\)

3/ 

a, Để A đạt gtln <=> 17/13-x đạt gtln <=> 13-x đạt gtnn và 13-x > 0

=> 13-x = 1 => x = 12

Khi đó \(A=\frac{17}{13-12}=17\)

Vậy Amax = 17 khi x = 12

b, \(B=\frac{32-2x}{11-x}=\frac{22-2x+10}{11-x}=\frac{2\left(11-x\right)+10}{11-x}=2+\frac{10}{11-x}\)

Để B đạt gtln <=> \(\frac{10}{11-x}\) đạt gtln <=> 11-x đạt gtnn và 11-x > 0

=>11-x=1 => x=10

Khi đó \(B=\frac{10}{11-10}=10\)

Vậy Bmax = 10 khi x=10

Nguyễn Khoa
13 tháng 7 2018 lúc 22:17

bạn trả lời đúng rùi

Phạm Băng Băng
Xem chi tiết
Phạm Băng Băng
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 10 2019 lúc 12:31

1/

\(\Leftrightarrow\left\{{}\begin{matrix}2x-y=0\\y-2=0\\x+y+z=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=2\\z=-3\end{matrix}\right.\)

2/ \(P=\sqrt{\left(5x-2\right)^2}+\sqrt{\left(3-5x\right)^2}\)

\(P=\left|5x-2\right|+\left|3-5x\right|\ge\left|5x-2+3-5x\right|=1\)

\(\Rightarrow P_{min}=1\) khi \(\frac{2}{5}\le x\le\frac{3}{5}\)

3/ ĐKXĐ: \(\left|x\right|\ge1\)

\(x^2-1-\sqrt{x^2-1}=0\)

\(\Leftrightarrow\sqrt{x^2-1}\left(\sqrt{x^2-1}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-1}=0\\\sqrt{x^2-1}=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-1=0\\x^2-1=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\pm1\\x=\pm\sqrt{2}\end{matrix}\right.\)

Khách vãng lai đã xóa