1. Tìm các số x, y, z thoả mãn đẳng thức;
\(\left(2x-y\right)^2+\left(y-2\right)^2+\sqrt{\left(x+y+z\right)^2}=0\)
2. Tìm GTNN của bt:
\(P=\sqrt{25x^2-20x+4}+\sqrt{25x^2-30x+9}\)
3. Giải pt:\(\sqrt{x^2-1}+1=x^2\)
Tìm ấcc số x, y, z thoả mãn đẳng thức:
\(\left(2x-y\right)^2+\left(y-2\right)^2+\sqrt{\left(x+y+z\right)^2}=0\)
Cho x,y,z là các số thực dương thỏa mãn đẳng thức xy+yz+zx=5. Tìm giá trị nhỏ nhất của biểu thức
\(P=\frac{3x+3y+3z}{\sqrt{6\left(x^2+5\right)}+\sqrt{6\left(y^2+5\right)}+\sqrt{6\left(z^2+5\right)}}\)
Cho x, y, z dương thỏa mãn xyz=1. Tìm GTLN của \(\dfrac{1}{\sqrt{\left(x+y\right)^2+\left(x+1\right)^2+4}}+\dfrac{1}{\sqrt{\left(y+z\right)^2+\left(y+1\right)^2+4}}+\dfrac{1}{\sqrt{\left(z+x\right)^2+\left(z+1\right)^2+4}}\)
cho x,y,z > 0 , xyz = 1. Tìm GTNN của: \(A=\frac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)
G.sử x, y là các số thực thoả mãn: \(\left(x+\sqrt{3+x^2}\right)\left(y+\sqrt{3+y^2}\right)=9\)
Tìm min: \(P=x^2+xy+y^2\)
Cho x,y,z>0 /xyz=8.
Tìm min P= \(\dfrac{x^2}{\sqrt{\left(1+x^3\right)\left(1+y^3\right)}}+\dfrac{y^2}{\sqrt{\left(1+y^3\right)\left(1+z^3\right)}}+\dfrac{z^2}{\sqrt{\left(1+z^3\right)\left(1+x^3\right)}}\)
Cho x,y,z>0 và xy+yz+zx=1
Tính giá trị bt:
\(P=x\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\dfrac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\dfrac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
1. Giải hpt : a) \(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}+\sqrt{z}=\sqrt{2017}\\\sqrt[3]{\left(x+3\right)\left(y+3\right)\left(z+3\right)}=3+\sqrt[3]{xyz}\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\sqrt{x+1}+\sqrt[4]{x-1}+\sqrt{y^4+2}=y\\x^2+2x\left(y-1\right)+y^2-6y+1=0\end{matrix}\right.\)