Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xem chi tiết
Chu Lâm Nhi
12 tháng 2 2020 lúc 17:11

  Gọi tử số của phân số đó là:a.

        Mẫu số của phân số đó là:b.

 Ta có: a/b = 32/60 => a = 32/60xb

 Mà: a+b=161

 Thay a = 32/60xb vào a+b=161 ta được:

 32/60xb+b=161

 Quy đồng mẫu số, ta có:

 32xb+60xb=161x60

 92xb=9660

 b=9660:92=105

 Tử số là: 161-105=56

 Vậy phân số đó là: 56/105.

Khách vãng lai đã xóa
Lê Thảo
Xem chi tiết
Nguyễn Vũ Minh Hiếu
11 tháng 5 2019 lúc 19:25

\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)

\(=\frac{1}{3}+\left(\frac{1}{5}-\frac{1}{5}\right)+\left(\frac{1}{7}-\frac{1}{7}\right)+...+\left(\frac{1}{97}-\frac{1}{97}\right)-\frac{1}{99}\)

\(=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)

~ Hok tốt ~

\(\)

Hoàng Ái Phương
11 tháng 5 2019 lúc 19:33

Viết thành 2 . (1/3.5 + 1/5.7 + 1/7.9 + ...+ 1/97.99

khang minh
20 tháng 9 2021 lúc 15:08

Tui hk bít nữa

Khách vãng lai đã xóa
Jetsuku Kayato
Xem chi tiết

Bài 1:

a: \(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\cdots+\frac{2}{97\cdot99}\)

\(=\frac13-\frac15+\frac15-\frac17+\cdots+\frac{1}{97}-\frac{1}{99}\)

\(=\frac13-\frac{1}{99}=\frac{32}{99}\)

b: \(\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\cdots+\frac{1}{97\cdot99}\)

\(=\frac12\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\cdots+\frac{2}{97\cdot99}\right)\)

\(=\frac12\left(\frac13-\frac15+\frac15-\frac17+\cdots+\frac{1}{97}-\frac{1}{99}\right)\)

\(=\frac12\left(\frac13-\frac{1}{99}\right)=\frac12\cdot\frac{32}{99}=\frac{16}{99}\)

c: \(\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+\cdots+\frac{1}{990}\)

\(=\frac{1}{3\cdot6}+\frac{1}{6\cdot9}+\frac{1}{9\cdot12}+\cdots+\frac{1}{30\cdot33}\)

\(=\frac13\left(\frac{3}{3\cdot6}+\frac{3}{6\cdot9}+\cdots+\frac{3}{30\cdot33}\right)\)

\(=\frac13\left(\frac13-\frac16+\frac16-\frac19+\cdots+\frac{1}{30}-\frac{1}{33}\right)\)

\(=\frac13\left(\frac13-\frac{1}{33}\right)=\frac13\cdot\frac{10}{33}=\frac{10}{99}\)

Bài 2:

Sửa đề: \(\frac{1}{41}+\frac{1}{42}+\cdots+\frac{1}{80}>\frac{7}{12}\)

Đặt \(A=\frac{1}{41}+\frac{1}{42}+\cdots+\frac{1}{80}\)

Ta có: \(\frac{1}{41}>\frac{1}{60}\)

\(\frac{1}{42}>\frac{1}{60}\)

...

\(\frac{1}{59}>\frac{1}{60}\)

\(\frac{1}{60}=\frac{1}{60}\)

DO đó: \(\frac{1}{41}+\frac{1}{42}+\cdots+\frac{1}{59}+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+\cdots+\frac{1}{60}+\frac{1}{60}=\frac{20}{60}=\frac13\) (1)

Ta có: \(\frac{1}{61}>\frac{1}{80}\)

\(\frac{1}{62}>\frac{1}{80}\)

...

\(\frac{1}{79}>\frac{1}{80}\)

\(\frac{1}{80}=\frac{1}{80}\)

Do đó: \(\frac{1}{61}+\frac{1}{62}+\cdots+\frac{1}{80}>\frac{1}{80}+\frac{1}{80}+\cdots+\frac{1}{80}=\frac{20}{80}=\frac14\) (2)

Từ (1),(2) suy ra \(\frac{1}{41}+\frac{1}{42}+\cdots+\frac{1}{80}>\frac13+\frac14\)

=>\(A>\frac13+\frac14\)

=>A>7/12

Thanh Xuân
Xem chi tiết
Neshi muichirou
28 tháng 4 2021 lúc 13:53

A = 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + ... + 1/95 - 1/97 + 1/97 - 1/99

A = 1/3 - 1/99

A = 32/99

BẠN TICK CHO MÌNH NHA !

\(B=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}\)

   \(=2.(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{97.99})\)

   \(=2.(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}+\dfrac{1}{7}+\dfrac{1}{9}+...+\dfrac{1}{97}-\dfrac{1}{99})\)

   \(=2.(\dfrac{1}{3}-\dfrac{1}{99})\)

   \(=2.\dfrac{1}{297}\)

   =\(\dfrac{2}{297}\)

do thi hong van
Xem chi tiết
Xem chi tiết
help me
Khách vãng lai đã xóa
cungsutu
Xem chi tiết
Nguyễn Minh Đăng
20 tháng 6 2020 lúc 14:50

Bài làm:

Ta có: Đặt \(A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)

\(A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)

\(A=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}>\frac{32}{100}=32\%\)

=> Biểu thức trên > 32%

=> đpcm

Khách vãng lai đã xóa
Nguyễn Minh Đăng
20 tháng 6 2020 lúc 14:58

Dạ đề nghị bạn Vũ Ngọc Tuấn không spam linh tinh lên bài làm nữa nhé!

Khách vãng lai đã xóa
Xyz OLM
20 tháng 6 2020 lúc 15:09

Ta có:

\(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}>\frac{32}{100}\)= 32%

Khách vãng lai đã xóa
Kim nhoii
Xem chi tiết
trần anh tú
26 tháng 11 2017 lúc 20:00

cậu lên mạng gõ là các bước cơ bản trong cầu lông đi.Lúc trước mình cũng học ở đóhahachúc cậu mai thi tốt

Nguyễn Thị Hường Hường
26 tháng 11 2017 lúc 19:36

làm theo lời các cô dạy là đc

nguyenvietcuong
Xem chi tiết
junpham2018
4 tháng 12 2019 lúc 19:28

a^2+b^2/a^2+c^2=b^2/c^2=b^2/ab=b/a

Khách vãng lai đã xóa
Nguyễn Thùy Trang ( team...
4 tháng 12 2019 lúc 19:32

Bạn ơi , bạn xem lại đề nhé! Mình làm thế này không biết có đúng đề không nữa?

Ta có \(a^2+c^2\ge0\)  (gt)  mà \(a^2\ge0 \forall a, c^2\ge0 \forall c\)=> \(a\ne0 , c\ne0\)=> \(b\ne0\)( vì \(ab=c^2\))

Với \(a,b,c \ne0\),  \(ab=c^2\)=> \(\frac{a}{c}=\frac{c}{b}\)

                                                      => \(\left(\frac{a}{c}\right)^2=\left(\frac{c}{b}\right)^2\)

                                                       => \(\frac{a^2}{c^2}=\frac{c^2}{b^2}=\frac{a^2+c^2}{c^2+b^2}\)   mà \(\frac{a}{c}=\frac{c}{b}\)

                                                     => \(\frac{a^2+c^2}{c^2+b^2}=\frac{a}{c}.\frac{c}{b}=\frac{a}{b}\)

Khách vãng lai đã xóa