Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
CAO Thị Thùy Linh
Xem chi tiết
bach nhac lam
14 tháng 2 2020 lúc 22:45

+ Ap dung bdt Co-si :

\(F=x-8y+8y+\frac{1}{y\left(x-8y\right)}\ge3\sqrt[3]{\left(x-8y\right)\cdot8y\cdot\frac{1}{y\left(x-8y\right)}}=6\)

Dau "=" \(\Leftrightarrow x-8y=8y=\frac{1}{y\left(x-8y\right)}\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=\frac{1}{4}\end{matrix}\right.\)

Khách vãng lai đã xóa
Vũ Ngọc Thảo Nguyên
Xem chi tiết
Trà My
Xem chi tiết
zZz Cool Kid_new zZz
8 tháng 12 2019 lúc 9:44

Áp dụng BĐT Cô si ta có:

\(x^3+8y^3+1\ge3\sqrt[3]{x^3\cdot8y^3\cdot1}=6xy\)

\(\Rightarrow x^3+8y^3+1-6xy\ge0\)

Dấu "=" xảy ra tại \(x=2y=1\Rightarrow x=1;y=\frac{1}{2}\)

Khi đó:

\(A=x^{2018}+\left(y-\frac{1}{2}\right)^{2019}=1^{2018}+0^{2019}=1\)

Khách vãng lai đã xóa
Cô gái thất thường (Ánh...
Xem chi tiết
Lan Anh Chúng Thị
19 tháng 10 2018 lúc 21:02

a, A = (x-1)(x+6) (x+2)(x+3)

= (x^2 + 5x -6 ) (x^2 + 5x + 6)

Đặt t = x^2 +5x 

A= (t-6)(t+6)

= t^2 - 36

GTNN của A là -36 khi và ck t= 0

<=> x^2 +5x = 0

<=> x=0 hoặc x=-5

Vậy...

nguyen van giang
Xem chi tiết
Thắng Nguyễn
18 tháng 9 2016 lúc 23:07

Bài 1: \(T=\sqrt{\frac{x^3}{x^3+8y^3}}+\sqrt{\frac{4y^3}{y^3+\left(x+y\right)^3}}\)

\(=\frac{x^2}{\sqrt{x\left(x^3+8y^3\right)}}+\frac{2y^2}{\sqrt{y\left[y^3+\left(x+y\right)^3\right]}}\)

\(=\frac{x^2}{\sqrt{\left(x^2+2xy\right)\left(x^2-2xy+4y^2\right)}}+\frac{2y^2}{\sqrt{\left(xy+2y^2\right)\left(x^2+xy+y^2\right)}}\)

\(\ge\frac{2x^2}{2x^2+4y^2}+\frac{4y^2}{2y^2+\left(x+y\right)^2}\ge\frac{2x^2}{2x^2+4y^2}+\frac{4y^2}{2x^2+4y^2}=1\)

\(\Rightarrow T\ge1\)

Bài 2:

[Toán 10] Bất đẳng thức | Page 5 | HOCMAI Forum - Cộng đồng học sinh Việt Nam

Nguyễn Tuấn
Xem chi tiết
Lonely Member
15 tháng 2 2016 lúc 19:47

sorry, mìh mới học lớp seven thôi

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 4 2018 lúc 14:29

Ta có 

P = x 2 4 + 8 y + y 2 1 + x = x 2 4 + 8 y + 2 y 2 4 + 4 x ≥ x + 2 y 2 8 + 4 x + 2 y

Dấu “=” xảy ra khi x = 2y

Đặt t = x + 2y; t ≥ 8 . Khi đó  P ≥ t 2 8 + 4 t

Xét hàm số  f t = t 2 8 + 4 t , t ∈ [ 8 ; + ∞ )

Suy ra f(t) đồng biến trên [ 8 ; + ∞ )  nên  f t ≥ f 8 = 8 5 Vậy m a x P = 8 5 ⇔ x = 4 ; y = 2

Đáp án A

Hà Minh Hiếu
Xem chi tiết
Đinh Đức Hùng
22 tháng 8 2017 lúc 14:52

Bđt phụ \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\forall\)

\(\Leftrightarrow2a^2+2b^2\ge a^2+2ab+b^2\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow a^2+b^2-2ab=\left(a-b\right)^2\ge0\)(đúng)

Áp dụng ta được : 

\(A\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}=\frac{\left(1+4\right)^2}{2}=\frac{25}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

Vậy \(A_{min}=\frac{25}{2}\) tại \(x=y=\frac{1}{2}\)

Moin CiL
Xem chi tiết
Kiều văn yên
20 tháng 12 2020 lúc 13:10
Bạn chơi ff ko 😀😀😀
Khách vãng lai đã xóa
Thành
20 tháng 12 2020 lúc 16:24

A= (x2+4y2+9/4+4xy+3x+3y) + (y2+5x+95/4)

  = (x+2y+3/2)2 + (y+5/2)2 + 15

=> A min = 15

Dấu "=" xảy ra khi y=-5/2 ; x=7/2

Khách vãng lai đã xóa
Ngô Chi Lan
20 tháng 12 2020 lúc 17:47

\(A=x^2+5y^2+4xy+3x+8y+26\)

\(=\left(x^2+4xy+4y^2\right)+\left(3x+6y\right)+\frac{9}{4}+\left(y^2+2y+1\right)+\frac{91}{4}\)

\(=\left(x+2y\right)^2+3\left(x+2y\right)+\frac{9}{4}+\left(y+1\right)^2+\frac{91}{4}\)

\(=\left(x+2y+\frac{3}{2}\right)^2+\left(y+1\right)^2+\frac{91}{4}\ge\frac{91}{4}\forall x,y\)

Dấu"="xảy ra khi \(\orbr{\begin{cases}x+2y+\frac{3}{2}=0\\y+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x+2y=-\frac{3}{2}\\y=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\y=-1\end{cases}}}\)

Vậy .....

Khách vãng lai đã xóa