CMR: tổng các bình phương của m số tự nhiên liên tiếp không thể là 1 SCP với m thuộc {3;4;5;6}
CMR: Tổng các số bình phương của 5 số tự nhiên liên tiếp không thể là 1 số chính phương.
Gọi 5 số đó là : a- 2 ; a - 1 ; a ; a + 1 ; a + 2
Tổng Bình phương 5 số là :
( a - 2 )^ 2 + ( a- 1 )^2+ a^2 + ( a+ 1 )^2 + ( a+ 2 )^2
=> a^2 - 4a + 4 + a^2 - 2a + 1 + a^2 + a^2 + 2a + 1 + a^2 + 4a + 4
= 5a^2 + 10
= 5 ( a^ 2 + 2 ) chia hết cho 5 (1)
Nhưng 5 ( a^2 + 2 ) không chia hết cho 25 (2)
Từ (1) và (2) => Tổng bình phương 5 số ko là số chính phương
Gọi 5 STN liên tiếp là n−2;n−1;n;n+1;n+2
Ta có A=(n−2)2+(n−1)2+n2+(n+1)2+(n+2)2
=5n2+10=5(n2+2)
n2 không tận cùng là 3;8=>n2+2 không tận cùng là 5 hoặc 0=>n2+2 không chia hết cho 5
=>5(n2+2) không chia hết cho 25=> A không phải SCP
Khó quá!
tk mình nha
Mong bạn thông cảm
Mình mới lớp 5 thôi
C/m tổng các bình phương của 5 số tự nhiên liên tiếp không thể là số chính phương
Gọi 5 số tự nhiên liên tiếp la n-2;n-1;n;n+1;n+2(n thuộc Z,n>= 2)
ta có (n-2)^2+(n-1)^2+n^2+(n+1)^2+(n+2)^2=5(n^2 + 2)
vì n^2 k thể tận cùng bởi 3 hoặc 8 do đó n^2 +2 k thê chia hết cho 5
suy ra 5(n^2 + 2) k la so chinh phuong
CMR: Tổng bình phương của 5 số tự nhiên liên tiếp không thể là số chính phương.
gọi 5 số tự nhiên đó lần lượt là n-2;n-1;n;n+1;n+2
Ta có:
(*) (n-2)2=n(n-2)-2(n-2)=n2-4n+4 (1)
(*)(n-1)2=n(n-1)-1(n-1)=n2-2n+1 (2)
(*)n2=n2 (3)
(*)(n+1)2=n(n+1)+1(n+1)=n2+2n+1(4)
(*)(n+2)2=n(n+2)+2(n+2)=n2+4n+4 (5)
Cộng liên tiếp (1);(2);(3);(4);(5)
pt<=>n2-4n+4+n2-2n+1+n2+n2+2n+1+n2+4n+4
=(n2+n2+n2+n2+n2)+(-4n-2n+2n+4n)+(4+1+1+4)
=5n2+10=5(n2+2) chia hết cho 5 nhưng ko chia hết cho 25
=>n2+n ko chia hết cho 5
=>đpcm
ta có: n^2 + (n-1)^2 +(n+1)^2 +(n-2)^2 +(n+2)^2
= n^2 + n^2 - 2n +1+ n^2 +2n+1 +n^2 - 4n+4+ n^2 +4n+4
= 5n^2 +10 không phải số chính phương
CMR tổng bình phương của 5 số tự nhiên liên tiếp không thể là số chính phương
cmr : tổng bình phương của 5 số tự nhiên liên tiếp không thể là một số chính phương
đơn giản thế này thôi:
Tổng bình phương của 5 STN liên tiếp chia 5 dư 4 không là SCP.
Cho A là tổng các bình phương của 111 STN liên tiếp nào đó. CMR: A không phải là SCP
Chứng minh rằng tổng các bình phương của 5 số tự nhiên liên tiếp không thể là 1 số chính phương.
Lời giải:Gọi tổng bình phương của 5 số tự nhiên liên tiếp là:
$T=a^2+(a+1)^2+(a+2)^2+(a+3)^2+(a+4)^2$
$T=5a^2+20a+30=5(a^2+4a+6)=5[(a+2)^2+2]$
Vì $(a+2)^2$ là scp nên chia 5 dư $0,1,4$. Do đó $(a+2)^2+2$ chia $5$ dư $1,2,3$
$\Rightarrow T$ chia hết cho $5$ nhưng không chia hết cho $25$ nên $T$ không phải là scp.
Ta có đpcm.
Chứng minh tổng các bình phương của 5 số tự nhiên liên tiếp không thể là 1 số chính phương.
Gọi 5 số tự nhiên liên tiếp đó là n – 2, n – 1, n, n +1, n + 2 ( n € N, n >2).
Ta có (n – 2)2 + ( n – 1)2 + n2 + (n + 1)2 + (n + 2)2 = 5 . (n2 + 2)
Vì n2 không thể tận cùng bởi 3 hoặc 8 do đó n2 + 2 không thể chia hết cho 5
=> 5. (n2 + 2) không là số chính phương hay A không là số chính phương (đpcm).
Cmr tổng của bình phương 5 số tự nhiên liên tiếp không thể là số chính phương
ai giải được mình tick