Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguuyen huy hanh
Xem chi tiết
Trịnh Tiến Đức
19 tháng 10 2015 lúc 11:18

A= 4x4+4x2+12

Vì 4x4;4x2 \(\ge0\)

=> A=4x4+4x2+12 \(\ge\)12

Để A nhỏ nhất => A=12

Khi đó 4x4+4x2+12=12

=> 4x4+4x2=0

=> x=0

Vậy giá trị nhỏ nhất của A=12 khi x=0 

Trương Anh Kiệt
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 9 2021 lúc 21:44

\(A=2x^2+4x+1=2\left(x^2+2x+1\right)-1=2\left(x+1\right)^2-1\ge-1\)

\(A_{min}=-1\) khi \(x=-1\)

Câu B chỉ có max, ko có min

\(B=-x^2+3x+4=-\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{25}{4}=-\left(x-\dfrac{3}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\)

\(B_{max}=\dfrac{25}{4}\) khi \(x=\dfrac{3}{2}\)

Câu C cũng chỉ có max, không có min

\(C=-4x^2+8x=-4\left(x^2-2x+1\right)+4=-4\left(x-1\right)^2+4\le4\)

\(C_{max}=4\) khi \(x=1\)

Câu D cũng chỉ có max, không có min

\(D=\dfrac{3}{4x^2-4x+1+4}=\dfrac{3}{\left(2x-1\right)^2+4}\le\dfrac{3}{4}\)

\(C_{max}=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2}\)

(4 câu có 3 câu sai đề)

Đặng Quỳnh Trang
Xem chi tiết
Trên con đường thành côn...
15 tháng 8 2021 lúc 22:10

undefined

binhdd.vital Đào Đức Bìn...
Xem chi tiết
trung
Xem chi tiết
Trúc Giang
23 tháng 6 2021 lúc 19:40

a)

\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

Daaus = xayr ra khi: x = 2

b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)

Dấu = xảy ra khi x = 3

c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)

Dấu = xảy ra khi

2x = y và y = 2

=> x = 1 và y = 2

๖ۣۜDũ๖ۣۜN๖ۣۜG
23 tháng 6 2021 lúc 19:41

a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)

Dấu "=" <=> x = 2

b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)

Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)

c) \(4x^2+2y^2-4xy-4y+1\)

\(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)

\(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)

Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

Ko cần bít
Xem chi tiết
quynh tong ngoc
26 tháng 6 2017 lúc 21:01

E=\(\left(4x^4+4x^2+1\right)-5\)

=\(\left(2x^2+1\right)^2-5\)

ta thấy \(\left(2x^2+1\right)^2\)>hoặc bằng 0 với mọi x

=>\(\left(2x^2+1\right)^2-5\)>hoặc bằng -5 với mọi x

Dấu "=" xảy ra khi 2x2+1=0<=>2x2=-1(vô lí)

VẬY ........................................

Trịnh Thành Công
26 tháng 6 2017 lúc 21:09

\(E=4x^4+4x^2-4\)

\(E=\left(2x^2\right)^2+4x^2+1-5\)

\(E=\left(2x^2+1\right)^2-5\)

             Vì \(2x^2\ge0\Rightarrow2x^2+1\ge1\)

                        \(\Rightarrow\left(2x^2+1\right)^2-5\ge-4\)

Dấu = xảy ra khi \(2x^2=0\Rightarrow x=0\)

           Vậy Min A = -4 khi x = 0

                              

Nguyễn Bảo Huy
Xem chi tiết
Le Thi Khanh Huyen
17 tháng 7 2016 lúc 11:55

\(4x^2+2x+12\)

\(=\left(4x^2+2x+\frac{1}{4}\right)+\frac{47}{4}\)

\(=\left[\left(2x\right)^2+2.\frac{1}{2}\left(2x\right)+\left(\frac{1}{2}\right)^2\right]+\frac{47}{4}\)

\(=\left(2x+\frac{1}{2}\right)^2+\frac{47}{4}\)

Có :

\(\left(2x+\frac{1}{2}\right)^2\ge0\)với mọi \(x\)

\(\Rightarrow\left(2x+\frac{1}{2}\right)^2+\frac{47}{4}\ge\frac{47}{4}\)

\(\Rightarrow\text{​​}\)GTNN của \(4x^2+2x+12\)là \(\frac{47}{4}\)

Đẳng thức xảy ra khi :

\(2x+\frac{1}{2}=0\)

\(2x=-\frac{1}{2}\)

\(x=-\frac{1}{4}\)

Vậy GTNN của \(4x^2+2x+12=\frac{47}{4}\)khi \(x=-\frac{1}{4}.\)

Vu Vo
Xem chi tiết
Lê Thị Xuân Thu
19 tháng 3 2021 lúc 15:24

Ta có C=x^2-4x-4 / x^2-4x+5

            =x^2-4x+4-8/x^2-4x+4+1

            =(x^2-4x+4)-8 / (x^2-4x+4)+1

            =(x-2)^2 -8/ (x-2)^2 +1

            =Vì (x-2)^2 >hoặc = 0

          =>(x-2)^2-8 > hoặc = -8 và (x-2)^2+1> hoặc =1  (với mọi x)

         Dấu ''='' xảy ra   <=> (x-2)^2 =0

                                   <=>x - 2 = 0

                                   <=>x      =2 

            <=> Giá trị nhỏ nhất của biểu thức C là  -8/1=-8

 Vậy giá trị nhỏ nhất của biểu thức C là  minC= - 8  khi x=2

              Chúc bạn làm bài tốt !  Mình ko chắc câu trả  lời của mình đúng đâu  , nhưng cũng ko phải là sai

Khách vãng lai đã xóa
Vũ Ngọc Thảo Nguyên
Xem chi tiết